首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   160篇
  国内免费   517篇
安全科学   79篇
废物处理   5篇
环保管理   50篇
综合类   1085篇
基础理论   114篇
污染及防治   77篇
评价与监测   126篇
社会与环境   7篇
灾害及防治   12篇
  2024年   60篇
  2023年   159篇
  2022年   162篇
  2021年   165篇
  2020年   152篇
  2019年   115篇
  2018年   63篇
  2017年   62篇
  2016年   54篇
  2015年   73篇
  2014年   83篇
  2013年   45篇
  2012年   50篇
  2011年   39篇
  2010年   42篇
  2009年   48篇
  2008年   35篇
  2007年   33篇
  2006年   21篇
  2005年   27篇
  2004年   11篇
  2003年   5篇
  2002年   10篇
  2001年   2篇
  2000年   9篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有1555条查询结果,搜索用时 15 毫秒
51.
郑州市PM2.5组分季节性特征及来源研究   总被引:1,自引:0,他引:1  
为了探究郑州市大气PM_(2.5)组分的季节性特征及来源,于2017年12月至2018年11月对郑州市5个点位进行采样,共采集有效环境受体样本1 166个。通过研究受体样本PM_(2.5)中的碳组分、水溶性离子和无机元素信息,获取各组分的季节特征,并结合正定矩阵因子分解(PMF)模型进行来源解析。结果表明,采样期间,郑州市PM_(2.5)平均浓度为69.6μg/m~3,占比较高的化学组分为NO_3~-、有机碳(OC)、SO_4~(2-)和NH_4~+,占比之和为86.7%。其中,NO_3~-、OC和NH_4~+呈现冬季高、夏季低的季节性浓度分布规律,SO_4~(2-)则是秋冬季稍高于春夏季。此外,Al、Si、Fe和Ca的浓度在春秋季略高于冬夏季。PMF模型解析结果显示,二次源为郑州市PM_(2.5)首要污染源,分担率为50.9%,其次是移动源(分担率12.0%)、燃煤源(分担率11.4%)和扬尘源(分担率10.2%)。其中,燃煤源在冬季较高、夏季较低,移动源在夏季最高,扬尘源在春季和秋季较高。  相似文献   
52.
为了探讨厦门金砖会晤期间的排放控制措施以及天气形势对大气颗粒物污染特征的影响,于2017年8月10日至9月10日对厦门气态污染物、细颗粒物(PM2.5)中的水溶性离子以及有机碳(OC)、元素碳(EC)等主要化学成分开展了高时间分辨率的在线监测。根据空气质量管控措施和天气形势将研究期分为6个阶段。管控前、管控期Ⅰ(非台风)和管控期Ⅱ(非台风) PM2.5质量浓度分别为(33. 12±9. 48)、(30. 30±17. 00)、(16. 01±4. 71)μg/m^3。管控期Ⅰ(台风)和管控期Ⅱ(台风) PM2.5质量浓度分别为(12. 40±3. 73)、(12. 45±3. 28)μg/m^3。结果表明:管控期Ⅰ(非台风)阶段受静稳天气的影响,管控效果削弱,PM2.5质量浓度下降幅度小;台风对颗粒物质量浓度下降的影响比管控更显著。管控初期,PM2.5中二次无机离子的质量浓度下降明显;台风对碳质组分质量浓度的影响不如无机组分显著。PMF源解析结果表明,二次无机源是PM2.5主要来源,随着管控措施的实行,扬尘源的贡献从21%降低到6%,而机动车源的贡献降幅不明显。台风期间SO4^2-、NO3^-、SO2、NO2以及硫酸盐氧化比值(SOR)均明显低于非台风期间,氮氧化比值(NOR)反而升高。台风和非台风期间NOR的日变化特征一致,NOR与阳离子的相关性分析结果表明,台风或高风速海风期间NOR与Na^+呈现很强的正相关性,说明海盐粒子可促进NO2非均相反应生成NO3-。  相似文献   
53.
于2021年6-10月利用CIA-ISQ7000型环境空气VOCs自动在线监测系统,对环境空气中多重类型化合物定性定量分析,分析范围包括117种VOCs(PAMS57种、醛酮类13种、卤代烃类47种),并开展不同O3污染情况下VOCs浓度特征、大气反应活性及来源研究。结果表明,VOCs体积分数浓度范围在(9.2~351.0)×10-9之间,污染日和非污染日VOCs平均体积浓度分别为(133.35±16.12)×10-9和(70.28±18.34)×10-9,污染日VOCs浓度较非污染日偏高90%。对于大气反应活性而言,污染日和清洁日VOCs对臭氧生成潜势(Ozone Formation Potential)的贡献均以醛酮类、烷烃类、卤代烃为主,且排名前10的优势物种基本一致,污染日排名前10的物种为乙烷、丙酮、乙炔、氯甲烷、丙烷、萘、甲醛、正丁烷、乙烯、三氯甲烷,非污染日排名前10的物种为乙烷、萘、四氢呋喃、乙炔、丙酮、氯甲烷、丙烷、甲醛、乙烯、三氯甲烷。PMF源解析结果显示,机动车尾气排放、溶剂使...  相似文献   
54.
为了解采暖期济南市大气PM2.5中水溶性离子的污染特征,于2020年12月18日-2021年1月8日在市区手工采集PM2.5样品,分别利用重量法和离子色谱法对PM2.5和9种水溶性离子质量浓度进行了测定,对其污染特征和来源进行了分析。结果表明,济南市大气中PM2.5质量浓度均值为(78±52)μg/m3,水溶性离子质量浓度均值为(43.2±32.7)μg/m3,在PM2.5中占比55.3%,是PM2.5的主要组分;随着污染加重,NH4+、NO3-、SO42-等二次离子(SNA)在PM2.5中占比显著提高,二次转化明显增强;SOR、NOR与风速、气压、混合层高度呈负相关,与气温、湿度呈正相关,在静稳天气下更容易产生二次转化;观测期间PM2.5...  相似文献   
55.
56.
采集了宁东能源化工基地核心区的146个表层土壤样品,检测了6种优控酚类污染物.运用单因子污染指数、内梅罗综合污染指数和致癌风险指数评价了酚类污染物的污染程度及健康风险.借助主成分分析和绝对主成分分数-多元线性回归受体模型,结合地统计学方法,对酚类污染物的空间分布及来源进行了分析.结果显示:2,4-二氯酚和2,4,6-三...  相似文献   
57.
为明确浙江省龙游县环境中PM2.5的化学组分特征及来源,于2018年在龙游县3个代表性点位采集4个季节的环境PM2.5样品,分析了PM2.5中的无机元素、水溶性无机离子和碳组分含量,并采用化学质量平衡模型(CMB)计算了7类污染源的贡献率.结果表明:3个点位PM2.5平均质量浓度春季为39.63μg/m3、夏季为29....  相似文献   
58.
2016—2017年武汉市城区大气PM2.5污染特征及来源解析   总被引:1,自引:0,他引:1  
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM2.5的污染特征及主要来源进行解析。结果表明,武汉市城区PM2.5质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO42-、NO3-和NH4+占总离子质量浓度的82.0%。PM2.5中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO2较NO2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM2.5的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM2.5五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。  相似文献   
59.
在武汉市工业区和交通区展开了PM_(2.5)样品采集,研究了PM_(2.5)中二元羧酸的化学组成、污染水平及来源。二元羧酸在工业区为103.1~2 219.2ng/m~3,年平均值为958.4ng/m~3;在交通区为66.9~2 176.8ng/m~3,年平均值为749.7ng/m~3。丙二酸/丁二酸(C_3/C_4,质量比,下同)表明,武汉市二元羧酸主要来自机动车尾气排放;己二酸/壬二酸(C_6/C_9)表明,二元羧酸的人为源贡献大于自然源。正定矩阵因子分解(PMF)模型解析结果显示,工业区中二次源占13.7%,建筑扬尘占23.1%,机动车尾气排放占37.0%,生物质燃烧占26.2%;交通区中二次源占8.9%,建筑扬尘占24.9%,机动车尾气排放占51.8%,生物质燃烧占14.4%。潜在源区贡献因子(PSCF)分析得出,武汉市夏季二元羧酸主要受到南部季风的影响,冬季主要受到西部冷空气的影响。  相似文献   
60.
某废弃铅冶炼场地周边蔬菜重金属污染水平及来源解析   总被引:1,自引:0,他引:1  
于某废弃铅冶炼场地周边菜地采集69份蔬菜样品,通过测定蔬菜样品中的As、Cd、Cr、Hg、Pb含量评价重金属污染水平,并对污染来源进行解析。结果表明,萝卜中As、Cd、Cr、Hg、Pb的整体水平分别为0.040、0.022、0.359、0.003、0.220mg/kg;白菜中的整体水平分别为0.026、0.022、0.307、0.004、0.158mg/kg;大葱中的整体水平分别为0.014、0.017、0.204、0.002、0.104mg/kg,蔬菜样品中Cr、Pb存在超过《食品安全国家标准食品中污染物限量》(GB 2762—2017)限值的现象,超标率分别为17.65%~46.15%、3.85%~86.77%;蔬菜中5种重金属的富集系数为CdHgPbCrAs,蔬菜中Cr、Pb为中度或重度污染,其中白菜比萝卜和大葱更易受到污染;工业排放源是周边地区蔬菜重金属含量的主要来源,其对萝卜、白菜和大葱重金属的贡献率分别为65.4%、35.5%、97.3%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号