全文获取类型
收费全文 | 274篇 |
免费 | 25篇 |
国内免费 | 75篇 |
专业分类
安全科学 | 11篇 |
环保管理 | 5篇 |
综合类 | 255篇 |
基础理论 | 31篇 |
污染及防治 | 7篇 |
评价与监测 | 10篇 |
社会与环境 | 54篇 |
灾害及防治 | 1篇 |
出版年
2024年 | 4篇 |
2023年 | 12篇 |
2022年 | 15篇 |
2021年 | 9篇 |
2020年 | 6篇 |
2019年 | 10篇 |
2018年 | 10篇 |
2017年 | 9篇 |
2016年 | 10篇 |
2015年 | 15篇 |
2014年 | 20篇 |
2013年 | 15篇 |
2012年 | 16篇 |
2011年 | 27篇 |
2010年 | 20篇 |
2009年 | 26篇 |
2008年 | 30篇 |
2007年 | 17篇 |
2006年 | 22篇 |
2005年 | 15篇 |
2004年 | 14篇 |
2003年 | 10篇 |
2002年 | 12篇 |
2001年 | 8篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
排序方式: 共有374条查询结果,搜索用时 20 毫秒
91.
长江口沉积物甲烷产生潜力与产甲烷菌群落特征 总被引:1,自引:0,他引:1
采用室内培养与高通量测序技术,研究了长江口沉积物产甲烷潜力及其产甲烷菌群落组成特征.结果表明,研究区沉积物甲烷排放速率为4.15~7.12 nmol·g~(-1)·d~(-1),且表现出厌氧区高、丰氧区低的特点.甲烷产生潜力为丰氧区大于厌氧区,说明甲烷在水体中氧化是减少甲烷排放的重要环境过程.研究区沉积物中产甲烷菌群落组成具有明显的差异.厌氧区沉积物产甲烷菌的优势群落为Methanococcoides(拟甲烷球菌属)、Methanosarcina(甲烷八叠球菌属)和Methanosaeta(甲烷鬃菌属),丰氧区沉积物为Methanosarcina(甲烷八叠球菌属)、Methanosaeta(甲烷鬃菌属)和Methanocella(甲烷胞菌属),因而缺氧过程会对产甲烷菌群落产生重要的影响.通过估算发现,研究区甲烷的排放量为2487~6819 t·a~(-1),表明长江口是甲烷排放的净产生源.因此,由缺氧过程导致的河口环境因子变化会影响甲烷的代谢循环过程及其微生物群落组成,进而对河口生态系统甲烷排放产生重要的影响. 相似文献
92.
93.
94.
Distribution of polycyclic aromatic hydrocarbons in sediments from Yellow
River Estuary and Yangtze River Estuary, China 总被引:1,自引:1,他引:1
Surface sediment samples collected from twenty-one sites of Yellow River Estuary and Yangtze River Estuary were determined
for sixteen priority polycyclic aromatic hydrocarbons (PAHs) by isotope dilution GC-MS method. The total PAH contents varied
from 10.8 to 252 ng/g in Yellow River Estuary sediment, and from 84.6 to 620 ng/g in Yangtze River Estuary sediment. The mean
total PAH content of Yangtze River Estuary was approximately twofold higher than that of Yellow River Estuary. The main reasons
for the di erence may be the rapid industrial development and high population along Yangtze River and high silt content of Yellow
River Estuary. The evaluation of PAH sources suggested that PAHs in two estuaries sediments estuaries were derived primarily from
combustion sources, but minor amounts of PAHs were derived from petroleum source in Yellow River Estuary. PAHs may be primary
introduced to Yellow River Estuary via dry/wet deposition, wastewater e uents, and accidental oil spills, and Yangtze River Estuary is
more prone to be a ected by wastewater discharge. 相似文献
95.
长江口的轮虫分布及其在环境监测中的意义... 总被引:5,自引:0,他引:5
1990年3月,在长江口布设24个轮虫采水取样站。记录13种,优势种是萼花臂尾轮虫Brachinus calyoifloru和矩形龟甲轮虫keratella quadrata.这些种类在长江口的分布与盐度梯度紧密相关.在淡水区13种都出现,盐度0.5~5之间发现3种,盐度在5~18之间区域发现一种,盐度18以上区域未发现轮虫。 相似文献
96.
Xue Fei Xi Lei Wang Jia Jun Hu Yu Shu Tang Yu Hu Xiao Hua Fu Ying Sun Yiu Fai Tsang Yan Nan Zhang Jin Hai Chen 《环境科学学报(英文版)》2014,26(12):2562-2570
Estuarine wetland, where freshwater mixes with salt water, comprises different regions(rivers and marine ecosystems) with significantly varying tidal salinities. Two sampling areas, ZXS and JS, were selected to investigate the effect of tidal salinity on soil respiration(SR). ZXS and JS were located in Zhongxia Shoal and Jiangyanan Shoal of Jiuduansha Wetland respectively, with similar elevation and plant species, but significantly different in salinity. The results showed that with almost identical plant biomass, the SR and soil microbial respiration(SMR) of the tidal wetland with lower salinity(JS) were significantly higher than those of the tidal wetland with higher salinity(ZXS)(p 〈 0.05). However, unlike SMR and SR, the difference in the soil microbial biomass(SMB) was not significant(p 〉 0.05)with the SMB of ZXS a little higher than that of JS. The higher SMR and SR of JS may be closely connected to the soil microbial community structures and amount of dominant bacteria. Abundant β- and γ-Proteobacteria and Actinobacteria in JS soil, which have strong heterotrophic metabolic capabilities, could be the main reason for higher SMR and SR,whereas a high number of ε-Proteobacteria in ZXS, some of which have carbon fixation ability, could be responsible for relatively lower carbon output. Path analysis indicated that soil salinity had the maximum negative total influencing coefficient with SMR among the various soil physical and chemical factors, suggesting that higher soil salinity, restricting highly heterotrophic bacteria, is the principle reason for lower SMR and SR in the ZXS. 相似文献
97.
通过实验室模拟实验,研究了不同pH及富氧、缺氧条件下长江径流淡水和东海外海水在混合过程中磷酸盐(PO4-P)的稀释模式,并结合2006~2007年长江口及邻近海域PO4-P的实际稀释状况,分析了pH及DO对PO4-P在河口混合行为的影响。结果表明:咸淡水混合需要一定的平衡时间,过滤后的长江水与外海水混合后,大约15 h后PO4-P浓度不再变化;未过滤的长江水与外海水混合则需要10 h的平衡时间。在不同pH咸淡水的混合过程中,PO4-P浓度与盐度均呈现出较好的相关性。且在高、低盐度区,PO4-P浓度与pH的变化分别呈现出不同的趋势。在缺氧和富氧状态下,PO4-P浓度均随盐度的增大而降低,且缺氧状态的PO4-P浓度高于富氧状态的PO4-P浓度。此外,根据2006~2007年长江口及邻近海域的现场调查数据可知,PO4-P在河口的实际稀释状况与本研究的实验结果基本相一致。 相似文献
98.
本研究利用三维荧光光谱(3DEEMs)结合平行因子分析(PARAFAC)模型,解析了2020年8月-2021年4月4个季节长江口门附近海域水体溶解性有机质(dissolved organic matter,DOM)的时空变化特征以及组成结构特征。结果表明:研究区域溶解性有机碳(dissolved organic carbon,DOC)的浓度秋季(2.76 mg/L)最大,夏季(2.56 mg/L)次之,春季(1.96 mg/L)和冬季(2.11 mg/L)的浓度较低且二者差异不显著;DOC浓度的区域分布表征为南支北港(3.20 mg/L)>北支(2.21 mg/L)>北港北沙(1.82 mg/L)。水体中的DOM可分为4个组分,分别为芳香氨基酸组分C1、陆源及海洋源类腐殖质组分C2、类色氨酸组分C3以及海洋源类腐殖质组分C4,组分C1、C2和C3间具有同源性,其中C1和C2占主体地位,C3次之,C4占比最小;组分C1和C4的占比随离岸距离的增大呈增大的趋势,而组分C3呈递减趋势;组分C1冬季占比最大,夏季最小,组分C3与C1占比情况相反。荧光特征参数的分析结果表明,水体DOM大部分为陆源输入和水生生物活动的内源共同作用,且自生源特征较显著,腐殖化特征较弱,一定程度上能表明研究区域水体活性较强,水质状况较好。 相似文献
99.
主要研究长江泥沙冲刷淤积而成的长江口围填海土壤,以上海市崇明岛为采样区域,以1974年至今的5个不同年代段的围填海土壤为研究对象,以PCBs为研究目标。在5个年代段上分别采集表层(0~15 cm)和深层(100 cm)土壤,样品经过索氏提取和层析净化后,由GC-MS对其进行定量定性检测分析,从而分析多氯联苯(PCBs)的含量和组成特征。结果显示:共检出了35种PCBs组分,表层和深层土壤中35PCBs含量范围分别为1.95410-9~3.71610-9、2.64910-9~3.68510-9;主要是二氯联苯和四氯联苯。此外,长江口围填海土壤中PCBs的含量先呈现出上升的趋势,直至1990s后,出现下降的趋势。最后基于层次聚类分析验证得出:深层土壤和下一时期表层土壤PCBs的污染水平和污染来源保持基本一致。 相似文献
100.
为了追踪2020年夏季长江流域特大洪水对长江口及其邻近海域重要生源要素的影响,本研究于2020年7月和2020年8月在该区域连续进行了两个航次的系统观测,测定了表层海水样品中悬浮颗粒物(suspended particulate matter,SPM)、颗粒有机碳(particulate organic carbon,POC)和溶解有机碳(dissolved organic carbon,DOC)的浓度,并将上述两个航次的结果与长江普通洪季月份(2019年7月)的相关结果进行了对比。结果表明,极端洪水导致口门内长江输出较高浓度的SPM、POC和DOC;长江增加的径流量和增加的上述3种陆源物质的输出通量对邻近海域的影响具有滞后性。与其他两个航次相比,在极端洪水影响下的2020年8月,外海海域也具有更高的SPM、POC和DOC浓度。另外,SPM中有机物占比POC(%)、POC/DOC(mol/mol)和POC/PN(mol/mol)3个指标的分布变化结果显示,2020年8月,长江口及其邻近海域具有最为强烈的陆源物质分布信号。 相似文献