首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27331篇
  免费   2552篇
  国内免费   8616篇
安全科学   4334篇
废物处理   952篇
环保管理   3741篇
综合类   19313篇
基础理论   3420篇
环境理论   11篇
污染及防治   3031篇
评价与监测   1263篇
社会与环境   1392篇
灾害及防治   1042篇
  2024年   100篇
  2023年   662篇
  2022年   1031篇
  2021年   1284篇
  2020年   1275篇
  2019年   1139篇
  2018年   939篇
  2017年   1070篇
  2016年   1269篇
  2015年   1407篇
  2014年   1420篇
  2013年   2074篇
  2012年   2276篇
  2011年   2412篇
  2010年   1681篇
  2009年   1915篇
  2008年   1476篇
  2007年   2111篇
  2006年   2099篇
  2005年   1668篇
  2004年   1450篇
  2003年   1316篇
  2002年   1084篇
  2001年   939篇
  2000年   862篇
  1999年   754篇
  1998年   533篇
  1997年   454篇
  1996年   323篇
  1995年   311篇
  1994年   249篇
  1993年   237篇
  1992年   149篇
  1991年   85篇
  1990年   68篇
  1989年   41篇
  1988年   47篇
  1987年   26篇
  1986年   21篇
  1985年   19篇
  1984年   25篇
  1983年   26篇
  1982年   25篇
  1981年   17篇
  1980年   18篇
  1979年   19篇
  1977年   8篇
  1973年   13篇
  1972年   10篇
  1971年   41篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
71.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM2.5浓度均未超过200μg/m3;除夕夜,廊坊站点PM2.5峰值浓度达到504μg/m3,是清洁天气的26倍;年初二~初五,各站点PM2.5始终高于120μg/m3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m3·s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM2.5峰值浓度可达无燃放时PM2.5峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   
72.
Chemical oxidation was applied to an artificially contaminated soil with naphthalene (NAP). Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. The importance of the air phase analysis was emphasized by demonstrating how NAP behaves in a sealed system over a 4 hr reaction period. Design of Experiments method was applied to the following variables: sodium persulfate concentration [SP], ferrous sulfate concentration [FeSO4], and pH. The system operated with a prefixed solid to liquid ratio of 1:2. The following conditions resulted in optimum NAP removal [SP] = 18.37 g/L, [FeSO4] = 4.25 g/L and pH = 3.00. At the end of the 4 hr reaction, 62% of NAP was degraded. In the soil phase, the chemical oxidation reduced the NAP concentration thus achieving levels which comply with Brazilian and USA environmental legislations. Besides the NAP partitioning view, the monitoring of each phase allowed the variabilities assessment over the process, refining the knowledge of mass reduction. Based on NAP distribution in the system, this study demonstrates the importance of evaluating the presence of semi-volatile and volatile organic compounds in the air phase during remediation, so that there is greater control of the system as to the distribution and presence of the contaminant in the environment. The results highlight the importance of treating the contaminant in all its phases at the contaminated site.  相似文献   
73.
Biowaste valorization through anaerobic digestion is an attractive option to achieve both climate protection goals and renewable energy production. In this paper, a complete set of batch trials was carried out on kitchen waste to investigate the effects of mild thermal pretreatment, temperature regimen and substrate/inoculum ratio. Thermal pretreatment was effective in the solubilisation of macromolecular fractions, particularly carbohydrates. The ability of the theoretical methodologies in estimating hydrogen and methane yields of complex substrates was evaluated by comparing the experimental results with the theoretical values. Despite the single batch configuration, a significant initial hydrogen production was observed, prior to methane yield. Main pretreatment effect was the gain in hydrogen production; the extent was highly variable according to the other parameters values. High hydrogen yields, up to 113 mL H2/g VSfed, were related to the prompt transformation of soluble sugars. Thermophilic regimen resulted, as expected, in faster digestions (up to 78 mL CH4/gVS/day) and sorted out pH inhibition. The relatively low methane yields (342–398 mL CH4/g VSfed) were the result of the consistent lignocellulosic content and low lipid content. Thermal pretreatment proved to be a promising option for the enhancement of hydrogen production in food waste dark fermentation.  相似文献   
74.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
75.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
76.
Because of its significant toxicological effects on the environment and human health,arsenic(As) is a major global issue.In this study,an Fe-based metal-organic framework(MOF)(Materials of Institut Lavoisier:MIL-100(Fe)) which was impregnated with reduced graphene oxide(rGO) by using a simple hydrothermal method and coated with birnessitetype manganese oxide(δ-MnO_2) using the one-pot reaction process(MIL-100(Fe)/rGO/δ-MnO_2 nanocomposites) was synthesized and applied successfully in As removal.The removal efficiency was rapid,the equilibrium was achieved in 40 min and 120 min for As(Ⅲ) and As(Ⅴ),respectively,at a level of 5 mg/L.The maximum adsorption capacities of As(Ⅲ) and As(Ⅴ) at pH 2 were 192.67 mg/g and 162.07 mg/g,respectively.The adsorbent revealed high stability in pH range 2-9 and saturated adsorbent can be fully regenerated at least five runs.The adsorption process can be described by the pseudo-second-order kinetic model and Langmuir monolayer adsorption.The adsorption mechanisms consisted of electrostatic interaction,oxidation and inner sphere surface complexation.  相似文献   
77.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
78.
79.
Direct synthesis of dimethyl ether(DME) by CO_2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods:co-precipitation,sol-gel,and solid grinding to produce mixed Cu,ZnO,ZrO_2 catalysts that were physically mixed with a commercial ferrierite(FER) zeolite.The catalysts were characterized by N_2 physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),temperature programmed desorption of CO_2(CO_2-TPD),temperature programmed desorption of NH_3(NH_3-TPD),and temperature programmed H2 reduction(H_2-TPR).The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases,higher surface area,and lower reduction temperature are all favorable for catalytic activity.The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).Methanol appears to be formed via the bidentate-formate(b-HCOO) species undergoing stepwise hydrogenation,while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.  相似文献   
80.
Methylglyoxal(CH_3COCHO,MG),which is one of the most abundant α-dicarbonyl compounds in the atmosphere,has been reported as a major source of secondary organic aerosol(SOA).In this work,the reaction of MG with hydroxyl radicals was studied in a 500 L smog chamber at(293±3) K,atmospheric pressure,(18±2)% relative humidity,and under different NOx and SO_2.Particle size distribution was measured by using a scanning mobility particle sizer(SMPS) and the results showed that the addition of SO_2 can promote SOA formation,while different NOx concentrations have different influences on SOA production.High NOx suppressed the SOA formation,whereas the particle mass concentration,particle number concentration and particle geometric mean diameter increased with the increasing NOx concentration at low NOx concentration in the presence of SO_2.In addition,the products of the OH-initiated oxidation of MG and the functional groups of the particle phase in the MG/OH/SO_2 and MG/OH/NOx/SO_2 reaction systems were detected by gas chromatography mass spectrometry(GC-MS) and attenuated total reflection fourier transformed infrared spectroscopy(ATR-FTIR) analysis.Two products,glyoxylic acid and oxalic acid,were detected by GC-MS.The mechanism of the reaction of MG and OH radicals that follows two main pathways,H atom abstraction and hydration,is proposed.Evidence is provided for the formation of organic nitrates and organic sulfate in particle phase from IR spectra.Incorporation of NOx and SO_2 influence suggested that SOA formation from anthropogenic hydrocarbons may be more efficient in polluted environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号