首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   6篇
  国内免费   32篇
安全科学   64篇
废物处理   43篇
环保管理   74篇
综合类   75篇
基础理论   168篇
污染及防治   60篇
评价与监测   54篇
社会与环境   29篇
灾害及防治   11篇
  2023年   6篇
  2021年   8篇
  2020年   8篇
  2019年   12篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   22篇
  2014年   15篇
  2013年   22篇
  2012年   9篇
  2011年   51篇
  2010年   42篇
  2009年   48篇
  2008年   32篇
  2007年   33篇
  2006年   25篇
  2005年   24篇
  2004年   13篇
  2003年   23篇
  2002年   32篇
  2001年   29篇
  2000年   20篇
  1999年   23篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有578条查询结果,搜索用时 15 毫秒
21.
In the mid 1980s the study of ozone reactivity gained a significant interest with the discoveries of the stratospheric ozone hole (Farman et al., 1985) and of the ozone depletion events in the polar boundary layer (Oltmans et al., 1989). In the stratosphere, the mechanism involves heterogeneous reactions on polar stratospheric clouds that lead to chlorine activation (Solomon et al., 1986). In contrast, tropospheric ozone depletion occurring during polar springtime rather involves reactive bromine species. They are released during a series of photochemical and heterogeneous reactions often called the bromine explosion (see the review of Simpson et al., 2007). In this reaction sequence, an essential step is the generation of photolyzable Br2, the precursor of two Br atoms, via the multiphasic reaction (1):
(1)
HOBr + Br + H+ → H2O + Br2
The production of reactive HOBr could occur with the oxidation of BrO by HO2.  相似文献   
22.
A coupled surface water-groundwater model of the Okavango Delta has been built based on the United States Geological Survey software MODFLOW 2000 including the SFR2 package for stream-flow routing. It will provide a new tool for evaluating water management and climate change scenarios. The delta's size and limited accessibility make direct, on the ground data acquisition difficult. Remote sensing methods are the most promising source of acquiring spatially distributed data for both model input parameters and calibration. Topography, aquifer thickness, channel positions, evapotranspiration and precipitation data are all based on remote sensing. Simulated flooding patterns are compared to patterns derived from visible to thermal NOAA-AVHRR data and microwave radar ENVISAT-ASAR data.  相似文献   
23.
This study estimates minimum marginal health benefits (morbidity reduction only) of air pollution control and total health benefits arising from regulatory intervention regarding the adoption of the World Bank emission guidelines (WBEG) for thermal power plants (TPPs) in Delhi. The Industrial Source Complex-Short-Term Version–3 (ISCST3) model has been used to estimate the contribution to air pollution from TPPs. The household health production function (avertive behaviour) has been used to value health benefits of air pollution control. The study revealed that the ambient air pollution due to TPPs is reduced by between 62.17% to 83.45% by adopting the WBEG. Annual marginal benefit due to reduction in exposure to air pollution by 1 μg m?3 is estimated to be US$0.353 per person. Total annual health benefits for adopting the WBEG for TPPs are estimated at US$235.19 million. This study provides a novel methodology to evaluate health benefits of regulatory intervention.  相似文献   
24.
Typical top-down regional assessments of CO2 storage feasibility are sufficient for determining the maximum volumetric capacity of deep saline aquifers. However, they do not reflect the regional economic feasibility of storage. This is controlled, in part, by the number and type of injection wells that are necessary to achieve regional CO2 storage goals. In contrast, the geomechanics-based assessment workflow that we present in this paper follows a bottom-up approach for evaluating regional deep saline aquifer CO2 storage feasibility. The CO2 storage capacity of an aquifer is a function of its porous volume as well as its CO2 injectivity. For a saline aquifer to be considered feasible in this assessment it must be able to store a specified amount of CO2 at a reasonable cost per ton of CO2. The proposed assessment workflow has seven steps that include (1) defining the storage project and goals, (2) characterizing the geology and developing a geomechanical model of the aquifer, (3) constructing 3D aquifer models, (4) simulating CO2 injection, (5,6) evaluating CO2 injection and storage feasibility (with and without injection well stimulation), and (7) determining whether it is economically feasible to proceed with the storage project. The workflow was applied to a case study of the Rose Run sandstone aquifer in the Eastern Ohio River Valley, USA. We found that it is feasible in this region to inject 113 Mt CO2/year for 30 years at an associated well cost of less than US $1.31/t CO2, but only if injectivity enhancement techniques such as hydraulic fracturing and injection induced micro-seismicity are implemented.  相似文献   
25.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   
26.
The field of oil spill cost modelling is not as well explored as desirable. Generally speaking, the existing models have either low accuracy, in that their predictions are far from the real cost, or low applicability, in that they are only valid under very specific conditions; such as in one particular country. This work strives to construct a model that is functional in a global scope and still possess a high level of accuracy. The resulting attempt is in many ways superior to the publicly available competitors, not only because of its predictive capacity but also because the model is quick to use, and its input variables should be readily available to any informed user. The model is more accurate comparing with similar available models. However, further study is needed to modify it to obtain more realistic results.  相似文献   
27.
28.
The strong fluctuating component in the measured concentration time series of a dispersing gaseous pollutant in the atmospheric boundary layer, and the hazard level associated to short-term concentration levels, demonstrate the necessity of calculating the magnitude of turbulent fluctuations of concentration using computational simulation models. Moreover the computation of concentration fluctuations in cases of dispersion in realistic situations, such as built-up areas or street canyons, is of special practical interest for hazard assessment purposes. In this paper, the formulation and evaluation of a model for concentration fluctuations, based on a transport equation, are presented. The model is applicable in cases of complex geometry. It is included in the framework of a computational code, developed for simulating the dispersion of buoyant pollutants over complex geometries. The experimental data used for the model evaluation concerned the dispersion of a passive gas in a street canyon between 4 identical rectangular buildings performed in a wind tunnel. The experimental concentration fluctuations data have been derived from measured high frequency concentrations. The concentration fluctuations model is evaluated by comparing the model's predictions with the observations in the form of scatter plots, quantile-quantile plots, contour plots and statistical indices as the fractional bias, the geometrical mean variance and the factor-of-two percentage. From the above comparisons it is concluded that the overall model performance in the present complex geometry case is satisfactory. The discrepancies between model predictions and observations are attributed to inaccuracies in prescribing the actual wind tunnel boundary conditions to the computational code.  相似文献   
29.
The Computational Fluid Dynamics code CFX-TASCflow is used for simulating the wind flow and pollutant concentration patterns in two-dimensional wind-tunnel models of an urban area. Several two-dimensional multiple street canyon configurations are studied corresponding to different areal densities and roof shapes. A line source of a tracer gas is placed at the bottom of one street canyon for modelling street-level traffic emissions. The flow fields resulting from the simulations correspond to the patterns observed in street canyons. In particular and in good agreement with observations, a dual vortex system is predicted for a deep flat-roof street canyon configuration, while an even more complex vortex system is evidenced in the case of slanted-roof square street canyons. In agreement with measurement data, high pollutant concentration levels are predicted either on the leeward or the windward side of the street canyon, depending on the geometrical details of the surrounding buildings.  相似文献   
30.
The dispersion of pollutants from naturally ventilated underground parking garages has been studied in a boundary layer wind tunnel. Two idealized model setups have been analysed, one was simulating pollutant dispersion around an isolated rectangular building and one was representing dispersion in a finite array of idealized building blocks. Flow and dispersion close to modelled ground level emission sources was measured. The results illustrate the complexity of the flow around buildings and provide insight in pollutant transport from ground level sources located directly on building surfaces. As a result, areas critical with respect to high pollutant concentrations could be visualized. Particularly, the results show high concentration gradients on the surface of the buildings equipped with modelled emission sources. Inside the boundary layers on the building walls, a significant amount of pollutants is transported to upwind locations on the surface of the building. The paper documents the potential of physical modelling to be used for the simulation and measurement of dispersion close to emission sources and within complex building arrangements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号