首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   7篇
综合类   4篇
基础理论   6篇
污染及防治   12篇
  2023年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
11.
二噁英(代DD)是一类毒性较强的环境污染物质.试验使用印记法定量检测了非洲爪蛙芳烃基受体(从R)及其核内的转录因子(Amt),细胞色素P450(CYP)中的CYP1A6 mRNA及CYP1A7 mRNA;用免疫反应检测了CYP1A蛋白质的表达.结果表明:TCDD的染毒没有引起AhR和Arnt表达量的增加,但引起CYP1A6 mRNA及CYP1A7 mRNA表达的极显著增加,以及CYP1A蛋白质的强烈表达;TCDD强烈诱发非洲爪蛙CYP1A,且存在质量浓度依存性,使用CYP1A作为环境危险性评价具有一定的可探讨性.   相似文献   
12.
The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.  相似文献   
13.
Zhang B  Zhang H  Jin J  Ni Y  Chen J 《Chemosphere》2012,88(7):798-805
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are ubiquitous contaminants and can be considerably accumulated by natural plants. In order to elucidate the biochemical and physiological responses of plant to PCDD/Fs, tobacco Bright Yellow-2 (BY-2) cells were selected as model plant and treated with time- and concentration-dependent PCDD/Fs. The toxic effect and oxidative stress caused by PCDD/Fs were evident, which could be indicted by the reduction in fresh mass, the increase in malondialdehyde (MDA) content, and the damage of tobacco cell ultrastructure. PCDD/Fs tolerance was correlated with changes in antioxidant system and hormones of tobacco cells. Superoxide dismutase (SOD) and peroxidase (POD) exhibited peak enzyme activities at the PCDD/Fs concentration of 1000 ng WHO98-TEQ g−1 fresh weight. Glutathione reductase (GR) enzyme activity increased monotonically at high level PCDD/Fs, but the activity of catalase (CAT) was only slightly affected at all treatment. Meanwhile, the exposure to PCDD/Fs resulted in the changes of hormones content. With the increase of exposure concentration of PCDD/Fs, the levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) increased, whereas the concentration of jasmonates (JAs) decreased. The above results suggest that tobacco cells had the ability to cope with the oxidative stress induced by low concentration of PCDD/Fs through increasing the activities of antioxidant enzymes and alternating plant hormones levels. However, oxidative stress and toxicity would burst out when plant cells were exposed to the high levels of PCDD/Fs.  相似文献   
14.
Cytochrome P450s (CYPs) play a key role in the metabolism of a wide range of environmental xenobiotics and endogenous compounds. The expression and activity levels of CYPs can be elevated by a process of induction involving the activation of nuclear receptors. The effects of the ionic liquid 1-octyl-3-methylimidazolium chloride ([C8mim][Cl]) on the expression of cytochrome P450 members, including CYP1A1, CYP2E1, and CYP3A, as well as on aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) in mouse mammary carcinoma cells (EMT6) were investigated by using quantitative real-time PCR in the present study. The results reveal that [C8mim][Cl]-exposure up-regulates the expressions of CYP1A1, CYP2E1, and CYP3A at mRNA level, suggesting that imidazolium-based ionic liquids can activate CYPs. Our results also suggest that [C8mim][Cl]-mediated CYP3A induction be PXR-dependent. This result may be beneficial to evaluating the environmental toxicity of imidazolium-based ionic liquids and investigating the metabolism of imidazolium-derivative drugs.  相似文献   
15.
化学物质的Ah受体效应重组基因酵母检测法的优化   总被引:2,自引:0,他引:2  
接有芳香烃受体(AhR)基因和芳香烃受体核转位子蛋白(ARNT)基因的酵母Saccharomyces cerevisiae菌株是测定化学物质的Ah受体效应的方法之一.本实验通过优化各个实验条件,发现用0.2%葡萄糖作前培养液培养菌24 h,用2%半乳糖作化学物质暴露时的培养液,暴露在玻璃管时,暴露时间从原来的18 h缩短到8 h.并用已经优化的方法测定了六氯苯和五氯苯的Ah受体效应,得出六氯苯和五氯苯相对于TCDD的毒性等当量值(TEF)分别为0.018629和0.000294.  相似文献   
16.
The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.  相似文献   
17.
Hydroxylated polycyclic aromatic hydrocarbons (OH-PAH) with less than four rings are frequently found in the environment, whereas the toxicities associated with these compounds remain unclear. In this study, aryl hydrocarbon receptor (AhR)–ligand binding activities of OH-PAH were investigated by using a recombinant yeast assay system. The majority of the OH-PAH tested showed AhR–ligand binding activities, especially, when the hydroxylated derivatives of naphthalene were incubated with recombinant yeast. The structure–activity relationship between AhR activity and molecular weight or the octanol–water partition coefficient value of OH-PAH displayed significant correlations. These findings indicate that the site and number of hydroxy-groups substituted on PAH skeleton apparently influenced the AhR – ligand binding activity in the recombinant yeast assay.  相似文献   
18.
过去30年,随着工农业的不断发展,由持久性有机污染物(POPs)导致的癌症患者不断增加.目前POPs已广泛存在于水生态系统中,对水生动物的生长发育、种群繁衍、群落结构等产生重要影响.虽然POPs对水生动物的毒理机制非常复杂,但研究表明其毒理机制主要通过芳香烃受体通道(Ah Rpathway)来进行调控.为全面理解水生动物AhR通道中每一个基因在毒理调控过程中的作用,论文从水生动物芳香烃通道的角度详细阐述了POPs的毒理机制,同时对水生动物中POPs的早期监测进行了讨论,最后提出了未来POPs毒理机制研究的发展方向.  相似文献   
19.
Background, aim, and scope  Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil. Materials and methods  To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100°C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay. Results  The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ. Discussion  The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants. Conclusions  Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process. Recommendations and perspectives  It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.  相似文献   
20.
2,3,7,8-Tetrachlorodibenzo(p)dioxin (TCDD) has been known to induce inflammatory signaling in a number of cell types and tissues. We found that in U937 macrophages TCDD causes rapid activation of cytosolic phospholipase A2 (cPLA2) within 30 min as judged by the increase in the serine 505 phosphorylated form of cPLA2 protein and the increased cellular release of free arachidonic acid. This initial action of TCDD is accompanied with the up-regulation of an important inflammation marker, COX-2 mRNA expression within 1 h, and by 3 h, several other markers become up-regulated. These effects appear to be dependent on the initial increase in the intracellular concentration of Ca2+, and activation of cPLA2 and COX-2. A comparative study among three different human cell lines showed that activation of COX-2 within 1 h of action of TCDD is a common feature exhibited by all cell lines. On the other hand, the U937 macrophage line appears to be unique among them with respect to its ability to activate TNF-α and IL-8 mRNA expressions, and not requiring Src kinase in propagating the initial signaling of cPLA2. Based on the rapidity of activation of cPLA2 and COX-2, which occurs within 1 h of cell exposure to TCDD, when no change in mRNA expression of CYP1A1 has been observed, it is apparent that this unique action of TCDD is carried out through a distinct “nongenomic” pathway which, is clearly discernable from the classical, “genomic” action pathway of the AhR by not requiring the participation of ARNT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号