全文获取类型
收费全文 | 67篇 |
免费 | 1篇 |
国内免费 | 48篇 |
专业分类
安全科学 | 3篇 |
废物处理 | 3篇 |
环保管理 | 4篇 |
综合类 | 54篇 |
基础理论 | 26篇 |
污染及防治 | 24篇 |
评价与监测 | 2篇 |
出版年
2023年 | 6篇 |
2022年 | 5篇 |
2021年 | 10篇 |
2020年 | 14篇 |
2019年 | 5篇 |
2018年 | 9篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 9篇 |
2014年 | 1篇 |
2013年 | 9篇 |
2012年 | 2篇 |
2011年 | 3篇 |
2010年 | 2篇 |
2009年 | 7篇 |
2008年 | 7篇 |
2007年 | 4篇 |
2006年 | 3篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2001年 | 2篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有116条查询结果,搜索用时 0 毫秒
11.
A combination of bacterial pretreatment followed by free water surface flow through wetland plants was investigated to determine its effect on removal of heavy metals in bioremediation of post-methanated distillery effluent (PMDE). The bacterial pretreatment was intended to transform the metal complexes and organic pollutants into simpler, biologically assimilable molecules. The 10% and 30% v/v concentrations of PMDE favored luxuriant bacterial growth; the 50% concentration supported less growth, whereas the undiluted effluent (i.e., 100%) supported very little bacterial growth. The use of bacterial pretreatment combined with the constructed wetland system greatly increase the overall bioaccumulation of all heavy metals by the plants compared with the control treatment. However, the integration of bacterial pretreatment of PMDE with the Typha angustata resulted in enhanced removal of Cd (34.02–61.50% increase), Cr (35.90–57.60% increase), Cu (32.88–54.22% increase), Fe (32.50–51.26% increase), Mn (35.99–82.85% increase), Ni (35.85–59.24% increase), Pb (33.45–59.51% increase) and Zn (31.95–53.70% increase) compared with a control that lacked this pretreatment. In addition to the bioaccumulation of these heavy metals, several physico-chemical parameters also improved at the 30% effluent concentration: color, BOD, COD, phenol and total nitrogen decreased by 98.33%, 98.89%, 98.50%, 93.75% and 82.39%, respectively, after 7 days of free water surface flow treatment. The results suggest that bacterial pretreatment of PMDE, integrated with phytoremediation will improve the treatment process of PMDE and promote safer disposal of this waste. 相似文献
12.
Kevin Lam Kelsie Thu Michelle Tsang Margo Moore Gerhard Gries 《Die Naturwissenschaften》2009,96(9):1127-1132
Female houseflies, Musca domestica (Diptera: Muscidae), lay their eggs in ephemeral resources such as animal manure. Hatching larvae compete for essential nutrients
with fungi that also colonize such resources. Both the well-known antagonistic relationship between bacteria and fungi and
the consistent presence of the bacterium Klebsiella oxytoca on housefly eggs led us to hypothesize (1) that K. oxytoca, and possibly other bacteria on housefly eggs, help curtail the growth of fungal resource competitors and (2) that such fungi
indeed adversely affect the development of housefly larvae. Bacteria washed from housefly eggs significantly reduced the growth
of fungi in chicken manure. Nineteen bacterial strains and ten fungal strains were isolated from housefly eggs or chicken
manure, respectively. Co-culturing each of all the possible bacterium–fungus pairs revealed that the bacteria as a group,
but no single bacterium, significantly suppressed the growth of all fungal strains tested. The bacteria's adverse effect on
fungi is due to resource nutrient depletion and/or the release of antifungal chemicals. Well-established fungi in resources
significantly reduced the number of larval offspring that completed development to adult flies.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
13.
Biofilm-producing bacteria can decrease Cd uptake in vegetables, but mechanisms underlying this effect are poorly characterized. In this study, two mutant strains B12ΔYwcc and B12ΔSlrR were constructed from a biofilm-producing Bacillus subtilis strain B12. Then, the impacts of strain B12 and its high biofilm-producing mutant strain B12ΔYwcc and low biofilm-producing mutant strain B12ΔSlrR on Cd availability and uptake in Chinese cabbage and the related mechanisms were investigated in the Cd-polluted soil. Strain B12 and its mutants B12ΔYwcc and B12ΔSlrR increased the dry biomasses of edible tissues by 54%–130% compared with the controls. Strain B12 and its mutant B12ΔYwcc reduced the soil available Cd content by 36%–50% and root and edible tissue Cd contents by 23%–50% compared with the controls. Furthermore, the mutant strain B12ΔYwcc reduced the edible tissue Cd content by 40% and increased the polysaccharide content by 23%, invertase activity by 139%, and gene copies of the cumA by 4.5-fold, epsA by 7.1-fold, and cadA by 4.3-fold, which were involved in Cd adsorption in the rhizosphere soils, respectively, compared with strain B12. The polysaccharide content and cumA, epsA, and cadA gene copy numbers showed significantly reverse correlations with the available Cd content. Notably, the mutant strain B12ΔYwcc showed better ability to colonize the vegetable root surface than strain B12. These findings demonstrated that the biofilm-overproducing mutant strain B12ΔYwcc increased the polysaccharide production and Cd-immobilizing related cumA, epsA, and cadA gene copies, resulting in lower Cd availability and accumulation in Chinese cabbage in the Cd-polluted soil. 相似文献
14.
The association between the rhizospheric microbial community and Cd accumulation in rice is poorly understood. A field trial was conducted to investigate the different rhizobacterial communities of two rice cultivars with high Cd accumulation (HA) and low Cd accumulation (LA) at four growth stages. Results showed that the Cd content in the roots of the HA cultivar was 1.23 - 27.53 higher than that of the LA cultivar (0.08 - 10.5 µg/plant) at four stages. The LA cultivar had a significantly lower Cd availability in rhizosphere and a higher quantity of iron plaque (IP) on the root surface than the HA cultivar at four stages. This resulted in the reduction of Cd concentration in IPs and Cd translocation from IP-to-root. Microbial analysis indicated that the LA cultivar formed a distinct rhizobacterial community from the HA cultivar and had less α-diversity. The rhizosphere of the LA cultivar was enriched in specific bacterial taxa (e.g., Massilia and Bacillus) involved in Cd immobilization by phosphate precipitation and IP formation by iron oxidization. However, the rhizosphere in the HA cultivar assembled abundant sulfur-oxidizing bacteria (e.g., Sulfuricurvum) and iron reduction bacteria (Geobacter). They promoted Cd mobilization and reduced IP formation via the metal redox process. This study reveals a potential approach in which specific rhizobacteria decrease or increase Cd accumulation in rice on contaminated soil and provides a new perspective for secure rice production. 相似文献
15.
In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil,bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example,a higher relative abundance of γ-Proteobacteria,Firmicutes,Chloroflexi and a lower proportion ofβ-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally,with an increase of the reclaimed water interference intensity,the rhizosphere bacterial community showed a decrease in taxon richness,evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased,while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that,the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement,while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment.Together these data suggest cause and effect between reclaimed water input into the wetland,shift in bacterial communities through habitat change,and alteration of capacity for biogeochemical cycling of contaminants. 相似文献
16.
Xu Ma Guiwei Li Ruya Chen Ying Yu Hui Tao Guangming Zhang Baoyou Shi 《环境科学学报(英文版)》2020,32(1):331-340
This study profiled the bacterial community variations of water from four water treatment systems,including coagulation,sedimentation,sand filtration,ozonation-biological activated carbon filtration(O3-BAC),disinfection,and the tap water after the distribution process in eastern China.The results showed that different water treatment processes affected the bacterial community structure in different ways.The traditional treatment processes,including coagulation,sedimentation and sand f... 相似文献
17.
Binbin Sheng Depeng Wang Xianrong Liu Guangxing Yang Wu Zeng Yiqing Yang Fangang Meng 《Frontiers of Environmental Science & Engineering》2020,14(6):93
18.
Reclamation of domestic wastewater for agricultural irrigation is viewed as a sustainable option to create an alternative water source and address water scarcity. Free-living amoebae(FLA), which are amphizoic protozoa, are widely distributed in various environmental sources. The FLA could cause considerable environmental and health risks. However, little information is available on the risk of these protozoa. In this study, we evaluated the feasibility using rural domestic wastewater for agricultural irrigation, and analyzed dynamic changes of the microbial community structure and FLA populations in raw and treated wastewater, as well as the phyllosphere and rhizosphere of lettuce production sites that were irrigated with different water sources. The bacterial community dynamics were analyzed by terminal restriction fragment length polymorphism(T-RFLP). The bacterial community structures in the influent were similar to that in the effluent, while in some cases relative abundances varied significantly. The populations of Acanthamoeba spp. and Hartmannella vermiformis in the anaerobically treated wastewater were significantly higher than in the raw wastewater. The vegetables could harbor diverse amoebae, and the abundances of Acanthamoeba spp. and H. vermiformis in the rhizosphere were significantly higher than in the phyllosphere. Accordingly, our studies show insight into the distribution and dissemination of amoebae in wastewater treatment and irrigation practices. 相似文献
19.
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron (Fe(III)), manganese (Mn(II)) and copper (Cu(II)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2+-Fe3+ combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atpD mutant (with defective FoF1-ATPase) MS116. Addition of Mn2+-Fe3+ combinations within the same concentration range had no effects on growth compared to control (without heavy metals). ATPase activity was increased in the presence of Mn2+-Fe3+, while together with 0.2 mmol/L N,N'-dicyclohexylcarbodiimide (DCCD), ATPase activity was decreased compared to control (when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential. The effects observed when Fe3+ was added separately disappeared in both cases, which might be a result of competing processes between Fe3+ and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria, and could be applied for regulation of stress response patterns in the environment. 相似文献
20.
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron (Fe(III)), manganese (Mn(II)) and copper (Cu(II)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2 +–Fe3 + combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atpD mutant (with defective FoF1-ATPase) MS116. Addition of Mn2 +–Fe3 + combinations within the same concentration range had no effects on growth compared to control (without heavy metals). ATPase activity was increased in the presence of Mn2 +–Fe3 +, while together with 0.2 mmol/L N,N′-dicyclohexylcarbodiimide (DCCD), ATPase activity was decreased compared to control (when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential. The effects observed when Fe3 + was added separately disappeared in both cases, which might be a result of competing processes between Fe3 + and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria, and could be applied for regulation of stress response patterns in the environment. 相似文献