He, Laien and Gregory V. Wilkerson, 2011. Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge. Journal of the American Water Resources Association (JAWRA) 47(6):1298–1316. DOI: 10.1111/j.1752‐1688.2011.00567.x Abstract: Bankfull discharge (Qbf) and bankfull channel geometry (i.e., width, Wbf; mean depth, Dbf; and cross‐section area, Abf) are important design parameters in stream restoration, habitat creation, mined land reclamation, and related projects. The selection of values for these parameters is facilitated by regional curves (regression models in which Qbf, Wbf, Dbf, and Abf are predicted as a function of drainage area, Ada). This paper explores the potential for the two‐year return‐period discharge (Q2) to improve predictions of Wbf, Dbf, and Abf. Improved predictions are expected because Q2 estimates integrate the effects of basin drainage area, climate, and geology. For conducting this study, 29 datasets (each representing one hydrologic region) spanning 14 states in the United States were analyzed. We assessed the utility of using Q2 by comparing statistical measures of regression model performance (e.g., coefficient of determination and Akaike’s information criterion). Compared to using Ada, Q2 is shown to be a “clearly superior” predictor of Wbf, Dbf, and Abf, respectively, for 21, 13, and 25% of the datasets. By contrast, Ada yielded a clearly superior model for predicting Wbf, Dbf, and Abf, respectively, for 0, 0, and 14% of the datasets. Our conclusion is that it alongside with developing conventional regional curves using Ada it is prudent to develop regional curves that use Q2 as an independent variable because in some cases the resulting model will be superior. 相似文献
This study investigates (i) the link of land use and road design on pedestrian safety and (ii) the effect of the level of spatial aggregation on the frequency of pedestrian accidents. For this purpose, pedestrian accident frequency models were developed for New York City based on an extensive dataset collected from different sources over a period of 5 years. The assembled dataset provides a rich source of variables (land-use, demographics, transit supply, road network and travel characteristics) and two different crash frequency outcomes: total and fatal-only collision counts. Among other things, it was observed that the census tract analysis (disaggregate data) provides more insightful and consistent results than the analysis at the zip code level. The results indicate that tracts with greater fraction of industrial, commercial, and open land use types have greater likelihood for crashes while tracts with a greater fraction of residential land use have significantly lower likelihood of pedestrian crashes. Moreover, census tracts that have a greater number of schools and transit stops - which are determinants of pedestrian activity - are more likely to have greater crashes. Results also show that the likelihood of pedestrian-vehicle collision increases with the number of lanes and road width. This suggests that retrofitting or narrowing the roads could possibly reduce the risk of pedestrian crashes. 相似文献
Objective: Operating speed is a critical indicator to evaluate consistency of road alignment and safety. Although extensive studies have been conducted on developing operating speed models, few researchers have considered the interactive influence of horizontal and vertical alignment in 3D space. The purpose of this study is to develop a speed model based on 3D alignment in Euclidean space rather than traditional horizontal and vertical alignment.
Methods: According to the curve theory of differential geometry, a novel method to estimate operating speed is proposed in our study using 3D space curvature instead of traditional horizontal or vertical parameters to describe the spatial geometric properties for a freeway alignment. Speeds of 54 different alignment segments are observed to develop the speed model. Several observing sites of each segment are selected beforehand, and the speeds of more than 300 vehicles in each site are observed. Space curvature is used as an important index to estimate operating speed.
Results: The findings of this study indicated that both horizontal alignment and vertical alignment contribute to space curvature. Space curvature mainly affects direction control operating performance. However, vehicles overcome the effects of gravity along the vertical alignment in the z direction. Results indicate that operating speed exponentially declines with space curvature and that quadratic parabola decline with vertical grade.
Conclusions: It can be concluded that there is a clear correlation between velocity and spatial curvature, which is proved by variance analysis. The estimation results of the speed models are reliable as tested using a real engineering example. The study would provide a scientific basis for safety evaluation of freeway alignment. 相似文献
The wind-driven flow patterns and the dispersion of vehicle exhaust pollutants released at street level has been simulated with the three-dimensional (3-D) dispersion model ADREA-HF (Andronopoulos et al., 1993), for idealised two-dimensional urban fetches occupied by buildings with slanted roofs. The simulation used oncoming atmospheric boundary layer characteristics corresponding to realistic above-town wind characteristics, as measured in reference wind tunnel experiments (Rafailidis, 1997). At that stage, analysis was limited to neutral stability conditions only. Firstly, the quality assurance of the numerical model was investigated in terms of the sensitivity to different grid allocations. The modelling results were corroborated by comparison with wind tunnel measurements in a similar two-dimensional domain (Pavageau et al., 1997). The numerical modelling replicated well the high degree of non-uniformity in the dispersion field in the test street, and the results agreed satisfactorily with the experimental measurements. The reasons for the differences observed have been investigated. With the model thus validated, three different exhaust release scenarios have been tested, keeping the same overall emission rate but different spatial patterns of street-release. The effect of the different street-release scenarios was found to be only marginal, with the dispersion patterns on the sidewalls affected only locally, close to the street level. 相似文献
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions. 相似文献
Increasing petroleum prices, increasing threat to the environment from exhaust emissions and global warming have generated intense international interest in developing renewable and alternative non-petroleum fuels for engines. Evolving technology and a recurring energy crisis necessitates a continuous investigation into the search for sustainable and clean-burning renewable fuels. In this paper, cottonseed oil methyl ester (COME) was used in a four-stroke, single-cylinder variable compression ratio diesel engine. Tests were carried out to study the effects of fuel injection timing, fuel injector opening pressure (IOP) and injector nozzle geometry on the performance and combustion of COME biodiesel fuel used in a compression ignition engine with a single fuel mode. Fuel injection timing varied from 19° to 27° before top dead centre (bTDC) in incremental steps of 4° bTDC; fuel IOP varied from 210 to 240 bar in incremental steps of 10 bar. Fuel nozzle injectors with three, four and five holes, each of 0.3 mm size, were selected for the study. The results suggested that with retarded injection timing of 19° bTDC, increased IOP of 230 bar and a four-hole nozzle injector of 0.3 mm size resulted in overall better engine performance with an increased brake thermal efficiency and reduced HC, CO and smoke emission levels. 相似文献
Channel dimensions are important input variables for many hydrologic models. As measurements of channel geometry are not available in most watersheds, they are often predicted using bankfull hydraulic geometry relationships. This study aims at improving existing equations that relate bankfull width, depth, and cross‐sectional area to drainage area (DA) without limiting their use to well‐gauged watersheds. We included seven additional variables in the equations that can be derived from data that are generally required by hydrologic models anyway and conducted several multiple regression analyses to identify the ideal combination of additional variables for nationwide and regional models for each Physiographic Division of the United States (U.S.). Results indicate that including the additional variables in the regression equations generally improves predictions considerably. The selection of relevant variables varies by Physiographic Division, but average annual precipitation (PCP) and temperature (TMP) were generally found to improve the models the most. Therefore, we recommend using regression equations with three independent variables (DA, PCP, and TMP) to predict bankfull channel dimensions for hydrologic models. Furthermore, we recommend using the regional equations for watersheds within regions from which data were used for model development, whereas in all other parts of the U.S. and the rest of the world, the nationwide equations should be given preference. 相似文献
Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x Abstract: This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (p <0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications. 相似文献