首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   0篇
  国内免费   1篇
综合类   8篇
基础理论   68篇
  2023年   1篇
  2021年   1篇
  2009年   7篇
  2008年   5篇
  2007年   11篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
排序方式: 共有76条查询结果,搜索用时 968 毫秒
61.
We examined whether several facultatively gregarious encyrtid (Hymenoptera: Encyrtidae) endoparasitoids of brown soft scale, Coccus hesperidum L., manifest precise sex allocation under field conditions. Metaphycus luteolus (Timberlake), Metaphycus angustifrons (Compere), Metaphycus stanleyi (Compere), and Microterys nietneri (Motshulsky) evince brood sex ratios that are female-biased and extremely precise (low variance in the number of sons per host). Typically, this sex allocation pattern is attributed to extreme local mate competition (LMC) in which only one foundress exploits a patch of hosts and mating occurs mostly between her offspring. However, such a pattern of sex allocation was not detected for Metaphycus helvolus (Compere). Also, a large proportion of the broods in all five species contained only daughters; thus, an excess of male-only broods was expected if unmated females (i.e., females that can produce only sons) contribute offspring before mating. All-male broods were rare in our samples. This finding coupled with the life history characteristics of these wasps, such as the exploitation of aggregated hosts and the long life span and mobility of males, suggest that nonlocal mating is frequent. Our empirical work suggests that it is advantageous to allocate precise sex ratios in cases in which mating opportunities for males are not restricted to their natal host and/or when multiple foundresses exploit large patches of hosts. Limited theoretical work also supports this prediction but more detailed studies of this taxon’s mating structure and other life history characteristics are necessary to understand their sex allocation decisions.  相似文献   
62.
Sex allocation theory predicts that if variance in reproductive success differs between the sexes, females who are able to produce high-quality young should bias offspring sex ratio towards the sex with the higher potential reproductive success. We tested the hypothesis that high-quality (i.e., heavy) female eastern kingbirds (Tyrannus tyrannus) that bred early in the breeding season would produce male-biased clutches. A significant opportunity for sexual selection also exists in this socially monogamous but cryptically polygamous species, and we predicted that successful extra-pair (EP) sires would be associated with an excess of male offspring. Although population brood sex ratio did not differ from parity, it increased significantly with female body mass and declined with female breeding date, but was independent of the morphology and display (song) behavior (correlates of reproductive success) of social males and EP sires. Male offspring were significantly heavier than female offspring at fledging. Moreover, the probability that male offspring were resighted in subsequent years declined with breeding date, and was greater in replacement clutches, but lower when clutch size was large. Probability of resighting female offspring varied annually, but was independent of all other variables. Given that variance in reproductive success of male kingbirds is much greater than that of females, and that male offspring are more expensive to produce and have a higher probability of recruitment if fledged early in the season, our results support predictions of sex allocation theory: high-quality (heavy) females breeding when conditions were optimal for male recruitment produced an excess of sons.  相似文献   
63.
Males and females have been reported to differ in their feeding of large and small siblings in several species of birds. According to recent hypotheses, this phenomenon may be related to a sexual conflict over avian hatching patterns. We designed an experiment to test for the existence of such a sex difference by manipulating nestling size hierarchies of the bluethroat (Luscinia s. svecica) in two directions; half the broods were “asynchronized” to yield large size-differences within broods and the other half were “synchronized” to yield small size-differences. In all broods, nestlings were categorized as being either large or small according to body mass. We recorded male and female food distribution by video early (day 4 after hatching) and late (day 8) in the nestling period. Males and females did not differ in their distribution of food among different-sized nestlings. With large size-differences, both males and females fed large nestlings nearly twice as often as small ones. In contrast, when the size-differences were small, food was more evenly distributed among nestlings. Early in the nestling period, males fed more nestlings during each feeding visit than did females. Our finding that male and female bluethroats do not differ in the feeding of large and small siblings is in contrast to most previous studies. Variation in costs and benefits to males and females from feeding different-sized nestlings, and restrictions to parental choice due to nestling interactions, may explain interspecific variation. Received: 27 June 1997 / Accepted after revision: 26 January 1998  相似文献   
64.
At least 19 hypotheses have been proposed to explain the evolutionary significance of avian hatching asynchrony, and hatching patterns have been suggested to be the result of several simultaneous selective pressures. Hatching asynchrony was experimentally modified in the black kite Milvus migrans by manipulating the onset of incubation during the laying period. Delayed onset of incubation reduced egg viability of first-laid eggs, especially when ambient temperature during the laying period was high. Brood reduction (nestling mortality by starvation or siblicide) was more commonly observed in asynchronous nests. The growth rate was slower in synchronous broods, probably due to stronger sibling rivalry in broods with high size symmetry. Last-hatched chicks in synchronous broods fledged at a small size/mass, while in control broods, hatching order affected growth rates, but not final size. Brood reduction, variable growth rates, and the ability to face long periods of food scarcity are probably mechanisms to adjust productivity to stochastic food availability in a highly opportunistic predator. The natural pattern of hatching asynchrony may be the consequence of opposing selective forces. Extreme hatching synchrony is associated with slow growth rates, small final size of last-hatched chicks, and low viability of first-laid eggs, while extreme hatching asynchrony is associated with high mortality rates. Females seem to facultatively manipulate the degree of hatching asynchrony according to those pressures, because hatching asynchrony of control clutches was positively correlated with temperature during laying, and negatively correlated with the rate of rabbit consumption. Received: 25 October 1999 / Revised: 30 May 2000 / Accepted: 25 June 2000  相似文献   
65.
Empirical evidence is growing that the offspring sex ratio in birds can be biased in relation to the body condition of parents during breeding. The sex ratio bias may come about because (1) the actual production of the two sexes may be skewed and/or (2) there may be a sex bias in early nestling mortality contingent on parental condition. By manipulating parental condition and giving them a control brood to rear, thereby eliminating effects operating via the eggs, we examined the extent to which parental condition influences the post-hatching survival of male and female lesser black-backed gulls, Larus fuscus. We found that the pre-fledging survival of male chicks was strongly reduced in all-male broods reared by parents in poor condition. Pre-fledging survival of female chicks was, however, unaffected by parental condition or brood sex composition. Thus, independently of any production biases, sex differences in nestling mortality alone can bias the offspring sex ratio at fledging in relation to the prevailing rearing conditions. In other studies on gulls we have, however, also shown that females in poor condition at laying preferentially produce female eggs. Clearly a bias in fledging sex ratio can occur within the same species due to a combination of differential production and differential post-laying mortality; the latter can involve a differential effect of poor egg quality on male and female offspring, differential effects of brood sex composition on their survival and a difference in the capacity of parents to rear males and females. All of these processes need to be taken into account in attempting to understand offspring sex ratios. Received: 15 February 2000 / Revised: 7 August 2000 / Accepted: 26 August 2000  相似文献   
66.
The theory of parental investment and brood sex ratio manipulation predicts that parents should invest in the more costly sex during conditions when resources are abundant. In the polygynous great reed warbler, Acrocephalus arundinaceus, females of primary harem status have more resources for nestling provisioning than secondary females, because polygynous males predominantly assist the primary female whereas the secondary female has to feed her young alone. Sons weigh significantly more than daughters, and are hence likely to be the more costly sex. In the present study, we measured the brood sex ratio when the chicks were 9 days old, i.e. the fledging sex ratio. As expected from theory, we found that female great reed warblers of primary status had a higher proportion of sons in their broods than females of lower (secondary) harem status. This pattern is in accordance with the results from two other species of marsh-nesting polygynous birds, the oriental reed warbler, Acrocephalus orientalis, and the yellow-headed blackbird Xanthocephalus xanthocephalus. As in the oriental reed warbler, we found that great reed warbler males increased their share of parental care as the proportion of sons in the brood increased. We did not find any difference in fitness of sons and daughters raised in primary and secondary nests. The occurrence of adaptive sex ratio manipulations in birds has been questioned, and it is therefore important that three studies of polygynous bird species, including our own, have demonstrated the same pattern of a male-biased offspring sex ratio in primary compared with secondary nests. Received: 1 June 1999 / Received in revised form: 10 January 2000 / Accepted: 12 February 2000  相似文献   
67.
In avian species whose chicks show facultative siblicide, attacks increase with food deprivation. In species that show obligate siblicide, this causal relationship is not expected, but no test has been made. When we composed artificial pairs of young brown boobies, Sula leucogaster (an obligately siblicidal species), and supplied variable amounts of food to the older nestlings in each pair, food ingestion was related to the most intense form of attack, pushes, which can cause death by expelling the broodmate from the nest. The less food an older nestling ingested, the more time it spent active and the greater its rate and absolute frequency of pushes, and the more often it expelled its nestmate. Hence, deficient food provision to older nestlings could precipitate siblicidal expulsion of broodmates. Younger nestmates were aggressive too, and the more they were pushed and expelled, the more they pecked. Aggression of senior brown-booby broodmates may be flexible and food sensitive in order to optimize the timing of siblicide or to make siblicide weakly facultative.Communicated by R. Gibson  相似文献   
68.
Parasitic female moorhens (Gallinula chloropus) lay from one to six eggs in the nests of conspecific neighbours. DNA fingerprinting was used to show that parasitic eggs could be correctly identified when they appeared in addition to or outside the host’s laying sequence. Moorhen hosts accept all parasitic eggs laid after the 2nd day of their laying period. To understand why moorhen hosts tolerate parasitic eggs, we tested two hypotheses. (1) The quasi-parasitism hypothesis: females lay their eggs in the evening when the host males are normally in attendance at the nest, so host males may allow parasitic females to lay in their nests in exchange for fertilizing their eggs. However, DNA fingerprinting showed that all the parasitic eggs were sired by the parasites’ mates. Parasitic moorhens frequently continue laying a clutch in their own nest, without a break in the laying sequence after a parasitic laying bout. The eggs laid by brood parasites in their own nests were also sired by their own mates. Therefore this hypothesis was rejected. (2) The kin selection hypothesis: if one or both members of the host pair are close relatives of the parasite, the costs of rearing parasitic chicks will be to some degree offset by inclusive fitness benefits. We examined the genetic relationships between parasites and their hosts using DNA fingerprinting and genealogical data. Natal philopatry by both sexes was relatively common in this population, and the probability that a neighbour of either sex was a first-order relative (parent-offspring) was calculated as 0.18. Although first-order relatives were not preferentially chosen as hosts over individuals that were not first-order relatives, even through random host selection there is almost a one-in-five chance that brood parasites in this population are closely related to their hosts. This may facilitate host tolerance of parasitic eggs. Other hypotheses are also discussed. Received: 3 February 1995/Accepted after revision: 27 August 1995  相似文献   
69.
Because brood parasitic nestlings are usually unrelated to their nestmates and to the provisioning adult, they are free from indirect costs of begging. Consequently, they are predicted to beg more intensely than host nestlings, and some models predict they will beg at an invariantly high level, regardless of short-term need. Previous work has shown intense begging by parasitic cowbirds, but short-term need was not controlled. In this study, we manipulated short-term need and measured begging intensity in two species pairs of host and parasitic nestlings: shiny cowbirds (Molothrus bonariensis) parasitizing larger hosts than themselves (rufous-bellied thrushes, Turdus rufiventris), and brown-headed cowbirds (M. ater) parasitizing smaller hosts than themselves (yellow warblers, Dendroica petechia). All four species increased their begging intensity with short-term need, though the change was much less pronounced between food-deprived and control treatments than between control and hand-feeding treatments. Shiny cowbirds begged more intensely than rufous-bellied thrushes following each treatment. In contrast, brown-headed cowbirds did not beg significantly more intensely than yellow warblers under any of the treatments. Intense begging by both species of parasites was as effective as host begging in stimulating the adults to make provisioning visits, but shiny cowbirds were less successful at acquiring food from adult thrushes. A wide array of factors may underlie the apparent differences in the begging behavior and success of brown-headed and shiny cowbirds, including relative size, experience, and local risk of nest predation. Our experiments clearly demonstrate, however, that these two species of parasitic cowbirds adjust their begging intensity based on short-term need.Communicated by H. Kokko  相似文献   
70.
Pollen is the sole source of protein for honey bees, most importantly used to rear young. Honey bees are adept at regulating pollen stores in the colonies based on the needs of the colony. Mechanisms for regulation of pollen foraging in honey bee are complex and remain controversial. In this study, we used a novel approach to test the two competing hypothesis of pollen foraging regulation. We manipulated nurse bee biosynthesis of brood food using a protease inhibitor that interferes with midgut protein digestion, significantly decreasing the amount of protein extractable from hypopharyngeal glands. Experimental colonies were given equal amounts of protease inhibitor-treated and untreated pollen. Colonies receiving protease inhibitor treatment had significantly lower hypopharyngeal gland protein content than controls. There was no significant difference in the ratio of pollen to nonpollen foragers between the treatments. Pollen load weights were also not significantly different between treatments. Our results supported the pollen foraging effort predictions generated from the direct independent effects of pollen on the regulation of pollen foraging and did not support the prediction that nurse bees regulate pollen foraging through amount of hypopharyngeal gland protein biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号