首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   16篇
  国内免费   157篇
安全科学   44篇
废物处理   30篇
环保管理   160篇
综合类   373篇
基础理论   153篇
环境理论   1篇
污染及防治   141篇
评价与监测   38篇
社会与环境   40篇
  2024年   2篇
  2023年   21篇
  2022年   30篇
  2021年   14篇
  2020年   15篇
  2019年   28篇
  2018年   20篇
  2017年   30篇
  2016年   41篇
  2015年   53篇
  2014年   52篇
  2013年   52篇
  2012年   32篇
  2011年   103篇
  2010年   44篇
  2009年   75篇
  2008年   69篇
  2007年   76篇
  2006年   31篇
  2005年   30篇
  2004年   20篇
  2003年   19篇
  2002年   13篇
  2001年   18篇
  2000年   11篇
  1999年   8篇
  1998年   15篇
  1997年   13篇
  1996年   10篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1969年   1篇
排序方式: 共有980条查询结果,搜索用时 343 毫秒
121.
较全面地剖析和解读了目前二氧化碳(CO2)捕集技术现状,通过燃烧后、燃烧前、氧燃烧等各种二氧化碳捕集技术的对比,提出各种捕集方法的适用范围和优、缺点,同时介绍了二氧化碳捕集技术的最新进展和发展方向。  相似文献   
122.
This paper examines the energy and carbon balance of two residential house alternatives; a typical wood frame home using more conventional materials (brick cladding, vinyl windows, asphalt shingles, and fibreglass insulation) and a similar wood frame house that also maximizes wood use throughout (cedar shingles and siding, wood windows, and cellulose insulation) in place of the more typical materials used – a wood-intensive house. Carbon emission and fossil fuel consumption balances were established for the two homes based on the cumulative total of three subsystems: (1) forest harvesting and regeneration; (2) cradle-to-gate product manufacturing, construction, and replacement effects over a 100-year service life; and (3) end-of-life effects – landfilling with methane capture and combustion or recovery of biomass for energy production.The net carbon balance of the wood-intensive house showed a complete offset of the manufacturing emissions by the credit given to the system for forest re-growth. Including landfill methane emissions, the wood-intensive life cycle yielded 20 tons of CO2e emissions compared to 72 tons for the typical house. The wood-intensive home's life cycle also consumed only 45% of the fossil fuels used in the typical house.Diverting wood materials from the landfill at the end of life improved the life cycle balances of both the typical and wood-intensive houses. The carbon balance of the wood-intensive house was 5.2 tons of CO2e permanently removed from the atmosphere (a net carbon sink) as compared to 63.4 of total CO2e emissions for the typical house. Substitution of wood fuel for natural gas and coal in electricity production led to a net energy balance of the wood-intensive house that was nearly neutral, 87.1 GJ energy use, 88% lower than the scenario in which the materials were landfilled.Allocating biomass generation and carbon sequestration in the forest on an economic basis as opposed to a mass basis significantly improves the life cycle balances of both houses. Employing an economic allocation method to the forest leads to 3–5 times greater carbon sequestration and fossil fuel substitution attributable to the house, which is doubled in forestry regimes that remove stumps and slash as fuel. Thus, wood use has the potential to create a significantly negative carbon footprint for a house up to the point of occupancy and even offset a portion of heating and cooling energy use and carbon emissions; the wood-intensive house is energy and carbon neutral for 34–68 years in Ottawa and has the potential to be a net carbon sink and energy producer in a more temperate climate like San Francisco.  相似文献   
123.
A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.  相似文献   
124.
Carbon source is a critical constraint on nutrient removal in domestic wastewater treatment. However, the functions of particulate organic matter (POM) and some organics with high molecular weight (HMW) are overlooked in the conventional process, as they cannot be directly assimilated into cells during microbial metabolism. This further aggravates the problem of carbon source shortage and thus affects the effluent quality. Therefore, to better characterize organic matter (OM) based MW distribution, microfiltration/ultrafiltration/nanofiltration (MF/UF/NF) membranes were used in parallel to fractionate OM, which obtained seven fractions. Hydrolysis acidification (HA) was adopted to manipulate the MW distribution of dissolved organic matter (DOM) and further explore the correlation between molecular size and biodegradability. Results showed that HA pretreatment of wastewater not only promoted transformation from POM to DOM, but also boosted biodegradability. After 8 hr of HA, the concentration of dissolved organic carbon (DOC) increased by 65%, from the initial value of 20.25 to 33.48 mg/L, and the biodegradability index (BOD5 (biochemical oxygen demand)/SCOD (soluble chemical oxygen demand)) increased from 0.52 to 0.74. Using MW distribution analysis and composition optimization, a new understanding on the characteristics of organics in wastewater was obtained, which is of importance to solving low C/N wastewater treatment in engineering practice.  相似文献   
125.
全球气候变化是当今全球关注的焦点和研究热点,碳排放核算对温室气体减排和控制具有重要意义。对当前碳排放核算方法进行了概述,介绍了各核算方法的基本原理和方法,并分析了各核算方法的特点,将为碳排放核算及其方法的选取提供参考依据。  相似文献   
126.
采用联合式催化剂新技术,在低温下进行了一氧化碳和氢化同消除的试验,通过实验考察取得了良好的效果。  相似文献   
127.
应用活性氧铝—百里香酚酞吸附CO2线性比长法研制出低浓度CO2检测管。测定范围0.05~0.90%;灵敏度为0.05%;检测管变色长度与CO2浓度的相关系数γ=0.9981,精密度与准确度符合国家标准83GB7220~7280。其可靠性与经典的何氏气体分析器比较,结果基本一致。低浓度的SO2、H2S和NH3对测定无明显干扰,现场监测应用效果可靠,值得推广应用。  相似文献   
128.
珠江流域河流碳输出通量及变化特征   总被引:6,自引:10,他引:6  
研究河流碳运移对于研究全球碳循环以及探讨河流对全球气候变化的响应机制具有重要意义.2012年4月和7月选取珠江主流及支流11个代表性断面,分析悬浮颗粒物和碳组分的空间分布和季节变化,同时选取博罗、石角和高要这3个主控断面,对珠江流域的碳通量和侵蚀模数进行了估算.结果表明,珠江流域悬浮颗粒物(TSS)、颗粒有机碳(POC)以及溶解有机碳(DOC)随雨季的到来而质量浓度升高,西江上游TSS和POC的质量浓度增加显著;珠江流域河流碳的4种组分中,溶解无机碳(DIC)的所占质量分数最高,且西江、北江的DIC质量浓度明显高于东江;西江、北江和东江河流中外源POC分别占78%、72%和26%,三大支流的POC均受上游C3植物的影响;珠江流域的TSS、总碳(TC)、POC、颗粒无机碳(PIC)、DOC、DIC、以及颗粒碳(TPC)、总有机碳(TOC)的入海通量分别为134×1012、12.69×1012、2.50×1012、1.01×1012、1.13×1012、8.05×1012、3.51×1012和3.65×1012g·a-1,对应的侵蚀模数分别为:309×106、28.98×106、5.75×106、2.27×106、2.56×106、18.4×106、8.02×106和8.31×106g·(km2.a)-1.与全球主要河流碳侵蚀模数相比,珠江流域河流DOC、POC和TOC的侵蚀模数均高于全球平均值.  相似文献   
129.
● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer. ● Ultra-fast degradation of micropollutants were achieved in KMnO4/CNT system. ● CNT mediated electron transfer process from electron-rich molecules to KMnO4. ● Electron transfer dominated organic degradation. Numerous reagents have been proposed as electron sacrificers to induce the decomposition of permanganate (KMnO4) by producing highly reactive Mn species for micropollutants degradation. However, this strategy can lead to low KMnO4 utilization efficiency due to limitations associated with poor mass transport and high energy consumption. In the present study, we rationally designed a catalytic carbon nanotube (CNT) membrane for KMnO4 activation toward enhanced degradation of micropollutants. The proposed flow-through system outperformed conventional batch reactor owing to the improved mass transfer via convection. Under optimal conditionals, a > 70% removal (equivalent to an oxidation flux of 2.43 mmol/(h·m2)) of 80 μmol/L sulfamethoxazole (SMX) solution can be achieved at single-pass mode. The experimental analysis and DFT studies verified that CNT could mediate direct electron transfer from organic molecules to KMnO4, resulting in a high utilization efficiency of KMnO4. Furthermore, the KMnO4/CNT system had outstanding reusability and CNT could maintain a long-lasting reactivity, which served as a green strategy for the remediation of micropollutants in a sustainable manner. This study provides new insights into the electron transfer mechanisms and unveils the advantages of effective KMnO4 utilization in the KMnO4/CNT system for environmental remediation.  相似文献   
130.
● China has pledged ambitious carbon peak and neutrality goals for mitigating global climate change. ● Major challenges to achieve carbon neutrality in China are summarized. ● The new opportunities along the pathway of China’s carbon neutrality are discussed from four aspects. ● Five policy suggestions for China are provided. China is the largest developing economy and carbon dioxide emitter in the world, the carbon neutrality goal of which will have a profound influence on the mitigation pathway of global climate change. The transition towards a carbon-neutral society is integrated into the construction of ecological civilization in China, and brings profound implications for China’s socioeconomic development. Here, we not only summarize the major challenges in achieving carbon neutrality in China, but also identify the four potential new opportunities: namely, the acceleration of technology innovations, narrowing regional disparity by reshaping the value of resources, transforming the industrial structure, and co-benefits of pollution and carbon mitigation. Finally, we provide five policy suggestions and highlight the importance of balancing economic growth and carbon mitigation, and the joint efforts among the government, the enterprises, and the residents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号