首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   10篇
  国内免费   114篇
安全科学   47篇
废物处理   23篇
环保管理   159篇
综合类   285篇
基础理论   159篇
环境理论   1篇
污染及防治   125篇
评价与监测   32篇
社会与环境   35篇
  2023年   23篇
  2022年   31篇
  2021年   14篇
  2020年   14篇
  2019年   28篇
  2018年   17篇
  2017年   26篇
  2016年   41篇
  2015年   45篇
  2014年   40篇
  2013年   48篇
  2012年   27篇
  2011年   95篇
  2010年   39篇
  2009年   62篇
  2008年   68篇
  2007年   68篇
  2006年   24篇
  2005年   24篇
  2004年   18篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   15篇
  1997年   9篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1969年   1篇
排序方式: 共有866条查询结果,搜索用时 421 毫秒
861.
As an effective conventional absorbent, biochar exhibited limited adsorption ability toward small hydrophobic molecules. To enhance the adsorption capacity, a novel adsorbent was prepared by immobilizing nanoscale zero-valent iron onto modified biochar (MB) and then the elemental silver was attached to the surface of iron (Ag/Fe/MB). It''s noted that spherical Ag/Fe nanoparticles with diameter of 51 nm were highly dispersed on the surface of MB. As the typical hydrophobic contaminant, carbon tetrachloride was selected for examining the removal efficiency of the adsorbent. The removal efficiencies of carbon tetrachloride by original biochar (OB), Ag/Fe, Ag/Fe/OB and Ag/Fe/MB were fully investigated. It''s found that Ag/Fe/MB showed higher carbon tetrachloride removal efficiency, which is about 5.5 times higher than that of the OB sample due to utilizing the merits of high adsorption and reduction. Thermodynamic parameters revealed that the removal of carbon tetrachloride by Ag/Fe/MB was a spontaneous and exothermic process, which was affected by solution pH, initial carbon tetrachloride concentration and temperature. The novel Ag/Fe/MB composites provided a promising material for carbon tetrachloride removal from effluent.  相似文献   
862.
<正>Nanoparticles(NPs)from anthropogenic sources have applications in several commercial products,including cosmetics,pharmaceuticals,and materials.There is evidence that during their usage and disposal,engineered nanoparticles can and will be released into wastewater(Gottschalk et al.,2013;Pasricha et al.,2012;Westerhoff et al.,2013;Zheng et al.,2015).If water and wastewater treatment plants are inefficient or incapable of removing NPs from water,NPs will be released with the treated effluent,entering drinking water sources and natural aquatic environments,increasing exposure for plants,microorganisms,  相似文献   
863.
基于中国能源消费数据,采用IPCC报告中碳排放估算方法,对我国1978~2010年的能源消费和碳排放特征进行研究。结果显示:中国能源消费和碳排放总量增幅较大,2010年中国能源消费量和二氧化碳排放量分别达到32.5亿t和76.13亿t,但是能源强度和碳强度总体上呈下降趋势;不论是总量上还是强度上,能源消费和碳排放的地区差异均较大。  相似文献   
864.
External carbon source addition is one of the effective methods for the treatment of wastewater with low carbon to nitrogen ratio (C/N). Compared with fast-release liquid carbon sources, slow-release solid carbon sources are more suitable for the denitrification process. A novel slow-release solid carbon source (corncob-polyvinyl alcohol sodium alginate- poly-caprolactone, i.e. CPSP) was prepared using corn cob (CC) and poly-caprolactone with polyvinyl alcohol sodium alginate as hybrid scaffold. The physical properties and carbon release characteristics of CPSP and three other carbon sources were compared. CPSP had stable framework and good carbon release performance, which followed the second order release equation. The formic acid, acetic acid, propionic acid and butyric acid released from CPSP accounted for 8.27% ± 1.66 %, 56.48% ± 3.71 %, 18.46% ± 2.69% and 16.79% ± 3.02% of the total released acids respectively. The start-up period of CPSP was shorter than that of the other carbon sources in denitrification experiment, and no COD pollution was observed in the start-up phase (25–72 h) and stable phase (73–240 hr). The composition and structure of the dissolved organic compounds released by CPSP and other carbon sources were analyzed by UV-Vis absorption spectroscopy and three-dimensional fluorescence spectroscopy, which indicated that CPSP was more suitable for denitrification than the other studied carbon sources.
  相似文献   
865.
The explosion hazard of flammable liquids leaking to form spray in storage and transportation at ambient temperature has not been systematically investigated. This work presents new results from experimental investigations of the atomization and explosion characteristics of methanol, and methanol-benzene blends forming near the azeotrope under different initial conditions (initial temperature (298.15–318.15 K), methanol concentration (198–514.8 g/m3) and benzene content (41–81%)) in a 20-L spherical vessel. The empirical formulas for Sauter Mean Diameter (SMD) of the droplets and the maximum explosion pressure with respect to the initial temperature and methanol concentration were obtained from the quantitative analysis. Compared to the explosion hazard of pure methanol and methanol-benzene blends spray, the results showed that the maximum rate of pressure rise and maximum explosion temperature of methanol-benzene blends were relatively low. Furthermore, the effect of carbon soot formation on the explosion hazard during explosion development was analyzed.  相似文献   
866.
● Summary of positive and negative effects of MNMs on algae. ● MNMs adversely affect algal gene expression, metabolite, and growth. ● MNMs induce oxidative stress, mechanical damage and light-shielding effects on algae. ● MNMs can promote production of bioactive substances and environmental remediation. The wide application of manufactured nanomaterials (MNMs) has resulted in the inevitable release of MNMs into the aquatic environment along their life cycle. As the primary producer in aquatic ecosystems, algae play a critical role in maintaining the balance of ecosystems’ energy flow, material circulation and information transmission. Thus, thoroughly understanding the biological effects of MNMs on algae as well as the underlying mechanisms is of vital importance. We conducted a comprehensive review on both positive and negative effects of MNMs on algae and thoroughly discussed the underlying mechanisms. In general, exposure to MNMs may adversely affect algae’s gene expression, metabolites, photosynthesis, nitrogen fixation and growth rate. The major mechanisms of MNMs-induced inhibition are attributed to oxidative stress, mechanical damages, released metal ions and light-shielding effects. Meanwhile, the rational application of MNMs-algae interactions would promote valuable bioactive substances production as well as control biological and chemical pollutants. Our review could provide a better understanding of the biological effects of MNMs on algae and narrow the knowledge gaps on the underlying mechanisms. It would shed light on the investigation of environmental implications and applications of MNMs-algae interactions and meet the increasing demand for sustainable nanotechnology development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号