首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   7篇
  国内免费   76篇
安全科学   105篇
废物处理   19篇
环保管理   73篇
综合类   299篇
基础理论   107篇
污染及防治   121篇
评价与监测   81篇
社会与环境   8篇
灾害及防治   5篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   31篇
  2020年   48篇
  2019年   13篇
  2018年   17篇
  2017年   13篇
  2016年   21篇
  2015年   25篇
  2014年   36篇
  2013年   36篇
  2012年   27篇
  2011年   41篇
  2010年   23篇
  2009年   59篇
  2008年   58篇
  2007年   45篇
  2006年   41篇
  2005年   25篇
  2004年   22篇
  2003年   29篇
  2002年   23篇
  2001年   23篇
  2000年   26篇
  1999年   19篇
  1998年   18篇
  1997年   16篇
  1996年   13篇
  1995年   9篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有818条查询结果,搜索用时 15 毫秒
771.
The large number of chemical spills each year in the United States presents a potentially significant risk to human health and the environment. In an effort to manage this risk, the authors are developing a screening tool to assess the immediate threat to human and environmental receptors from land-based chemical spills. As part of this development effort, a modified Delphi survey was employed to determine the most important factors governing this risk and the relative importance of these factors. Results of the survey indicate that accounting for the attributes of the spilled chemical as well as the characteristics of the surrounding environment is imperative in making informed decisions regarding spill planning and mitigation. Survey results further indicate the greatest concern during spill events to be the risk to human health, which must be considered directly as well as factored into decisions concerning the protection of environmental receptors.  相似文献   
772.
Dimethyl disulphide (DMDS) removal was investigated in a compact scrubber (hydraulic residence time ≈20 ms), composed of a wire mesh packing structure where liquid and gas flow at co-current and high gas superficial velocity (>12 m s−1). In order to regenerate the scrubbing liquid and to maintain a driving force in the scrubber, ozone and hydrogen peroxide were added to water since they allow the generation of nonselective and highly reactive species, hydroxyl radicals HO. Three ways of reagent distribution were tested. The influence of several parameters (liquid flow rate(s), ozone flow rate, pH and reagent concentrations) was investigated. The best configuration was obtained when ozone is transferred in the scrubbing liquid before introduction at the top of the scrubber simultaneously with the hydrogen peroxide solution, allowing to generate hydroxyl radical in the scrubber. With this configuration, DMDS removal could be increased from 16% with water to 34% at the same gas and liquid flow rates in the scrubber showing the potentiality of advanced oxidation process.  相似文献   
773.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   
774.
The chemical industry has an important role in our modern society. Due to the existence of hazardous materials and possible extreme producing conditions, chemical facilities are also considered dangerous. Research has pointed out that a successful attack on chemical plants may cause mass casualties, in the United States. Game theory has been employed to improve the protection of chemical plants, and current literature on chemical plant protection games assume a ‘rational’ attacker. The present paper studies a game-theoretic model, which is played by a rational defender and a ‘bounded rational’ attacker, for improving chemical plant protection. The attacker modeled in this paper is assumed to play higher payoff strategies with higher probabilities, which is innovative from the current chemical security literature. Attackers in the current chemical plant protection games would always play the strategy with the highest payoff (probability of 100%). Distribution-free uncertainties on attacker's parameters are also integrated into the model. An algorithm for solving the game presented in this paper is also proposed. A case study reveals that although a bounded rational attacker would reduce the defender's expected payoff, the defender's equilibrium strategy from the present model is robust to different attacker behaviors.  相似文献   
775.
本文就有毒化学品的生产、使用,给环境带来新的污染与危害问题,概括地阐述了国内外防治有毒化学品的污染状况;并针对当前的具体问题,提出防治和控制措施.  相似文献   
776.
•HAAs was dominant among the DBPs of interest. •Rising time, dose, temperature and pH raised TCM and HAAs but reduced HANs and HKs. •Low time, dose and temperature and non-neutrality pH reduced toxic risks of DBPs. •The presence of EPS decelerated the production of DBPs. •EPS, particularly polysaccharides were highly resistant to chlorine. Periodic chemical cleaning with sodium hypochlorite (NaClO) is essential to restore the membrane permeability in a membrane bioreactor (MBR). However, the chlorination of membrane foulants results in the formation of disinfection by-products (DBPs), which will cause the deterioration of the MBR effluent and increase the antibiotic resistance in bacteria in the MBR tank. In this study, the formation of 14 DBPs during chemical cleaning of fouled MBR membrane modules was investigated. Together with the effects of biofilm extracellular polymeric substances (EPS), influences of reaction time, NaClO dosage, initial pH, and cleaning temperature on the DBP formation were investigated. Haloacetic acids (HAAs) and trichloromethane (TCM), composed over 90% of the DBPs, were increasingly accumulated as the NaClO cleaning time extended. By increasing the chlorine dosage, temperature, and pH, the yield of TCM and dichloroacetic acid (DCAA) was increased by up to a factor of 1‒14, whereas the yields of haloacetonitriles (HANs) and haloketones (HKs) were decreased. Either decreasing in the chlorine dosage and cleaning temperature or adjusting the pH of cleaning reagents toward acidic or alkaline could effectively reduce the toxic risks caused by DBPs. After the EPS extraction pretreatment, the formation of DBPs was accelerated in the first 12 h due to the damage of biofilm structure. Confocal laser scanning microscopy (CLSM) images showed that EPS, particularly polysaccharides, were highly resistant to chlorine and might be able to protect the cells exposed to chlorination.  相似文献   
777.
The mass, ionic and elemental size distributions of particulate matter (PM) measured indoors and outdoors in an apartment situated in a north–westward suburb of Prague are presented. The PM samples were collected by two Berner type low pressure impactors separating particles into 10 size fractions from 26 nm to 10 μm and were further analyzed by ion chromatography (IC) and proton induced X-ray emission (PIXE). Temperature, pressure and relative humidity were measured both indoors and outdoors parallel to PM sampling. The indoor and outdoor PM dynamics were recorded by two scanning mobility particle sizers (SMPS) and an aerodynamic particle sizer (APS). Finally, the ventilation rate was determined by a radon technique. Ion chromatography showed that the major inorganic components of the fine particle mode are sulfate, nitrate, and ammonium with very low indoor nitrate concentration. Crustal elements (Al, Si, Ca, Ti, Mn, and Fe) were associated with the coarse aerosol mode. The presence of people increased the mass concentration of coarse particles, whereas cooking, smoking, and burning of incense and candles contributed predominantly to the fine particle mode. Smoking and the burning of incense also increased the concentration of potassium, bromine and chlorine content in fine particles.  相似文献   
778.
Brown  Keith S.  Trigo  José Roberto 《Chemoecology》1994,5(3-4):119-126
Summary As recognized by Miriam Rothschild as early as the 1960s and repeatedly emphasized in her papers, the use, misuse, or non-use of plant allelochemicals by insects is extremely variable and difficult to predict, at many levels of time, space, and biological organization. Although certain patterns that reoccur have been important in the development of ecological theory, the optimization of cost-benefit equations involving two or three trophic levels, each with large numbers of individuals, populations, and species in erratic and complex interactions, produces unexpected and fascinating scenarios. The development of rapid colorimetric and chromatographic analyses for several types of plant allelochemicals, notably certain groups of alkaloids, cardiac and cyanogenic glycosides, phenolics, terpenes, and glucosinolates, has permitted a detailed investigation of the variation and flow of these substances in natural organisms and ecosystems. The results of these analyses, in our hands mostly for pyrrolizidine alkaloids (PAs), do not suggest a straightforward classical choice by the aposematic insect to simply sequester or synthesize its defences. Rather, they reveal a confusing variety of diffuse and complex patterns that become increasingly closer to chaos as they are multiplied across structures, species, sexes, stages, sites, seasons, and selective regimes. We present a model reflecting results of analyses at this chemoecological interface. Depending upon an initial option, involving the recognition (or not) of a plant allelochemical, the herbivore will face thereafter options to ingest it (or not), and then to tolerate and absorb (or detoxify and excrete), modify (or not), passively, actively or selectively accumulate, turn over (or not), distribute (or concentrate), and use this compound in a variety of growth, defense, or reproductive functions. The herbivore can also quantitatively or qualitatively regulate the intensity or dispersion of its attack on the plant tissues, in order to modify feedback loops of selection on the plant and its chemicals which exist in most of the earlier steps, or those with its predators and parasites that occur in the later ones. Options that lead to mutualism through positive feedback loops will tend to accumulate and become rapidly fixed by natural selection. Additional variations and anomalies such as automimicry, chemical mimicry, sexual dimorphism and communication, selective sequestration and passing-up of allelochemicals, special glands and structures, and synergism effects, are among the secondary complications of this model that have occupied much thought, time, experimental labor, and polemical space in chemical ecology journals and meetings. Examination of the tendencies and results at various points in the model can be used to explain these features and to make further predictions, plan experiments, and devise activity-based bioassays and new chemical analyses. These may lead some day to new and more robust visions of the major patterns of chemical transfer at this widespread and important natural interface.  相似文献   
779.
We present estimates of the vehicular contribution to ambient organic carbon (OC) and fine particle mass (PM) in Pittsburgh, PA using the chemical mass balance (CMB) model and a large dataset of ambient molecular marker concentrations. Source profiles for CMB analysis are selected using a method of comparing the ambient ratios of marker species with published profiles for gasoline and diesel vehicle emissions. The ambient wintertime data cluster on a hopanes/EC ratio–ratio plot, and therefore can be explained by a large number of different source profile combinations. In contrast, the widely varying summer ambient ratios can be explained by a more limited number of source profile combinations. We present results for a number of different CMB scenarios, all of which perform well on the different statistical tests used to establish the quality of a CMB solution. The results illustrate how CMB estimates depend critically on the marker-to-OC and marker-to-PM ratios of the source profiles. The vehicular contribution in the winter is bounded between 13% and 20% of the ambient OC (274±56–416±72 ng-C m−3). However, variability in the diesel profiles creates uncertainty in the gasoline–diesel split. On an OC basis, one set of scenarios suggests gasoline dominance, while a second set indicates a more even split. On a PM basis, all solutions indicate a diesel-dominated split. The summer CMB solutions do not present a consistent picture given the seasonal shift and wide variation in the ambient hopanes-to-EC ratios relative to the source profiles. If one set of source profiles is applied to the entire dataset, gasoline vehicles dominate vehicular OC in the winter but diesel dominates in the summer. The seasonal pattern in the ambient hopanes-to-EC ratios may be caused by photochemical decay of hopanes in the summer or by seasonal changes in vehicle emission profiles.  相似文献   
780.
The European regulation on chemicals, REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals), came into force on 1 June 2007. With pre-registration complete in 2008, data for these substances may provide an overview of the expected chemical space and its characteristics. In this paper, using various in silico computation tools, we evaluate 48 782 neutral organic compounds from the list to identify hazardous and safe compounds. Two different classification schemes (modified Verhaar and ECOSAR) identified between 17% and 25% of the compounds as expressing only baseline toxicity (narcosis). A smaller portion could be identified as reactive (19%) or specifically acting (2.7%), while the majority were non-assigned (61%). Overall environmental persistence, bioaccumulation and long-range transport potential were evaluated using structure-activity relationships and a multimedia fugacity-based model. A surprisingly high proportion of compounds (20%), mainly aromatic and halogenated, had a very high estimated persistence (>195 d). The proportion of compounds with a very high estimated bioconcentration or bioaccumulation factor (>5000) was substantially less (6.9%). Finally, a list was compiled of those compounds within the applicability domain of the models used, meeting both persistence and bioaccumulation criteria, and with a long-range transport potential comparable to PCB. This list of 68 potential persistent organic pollutants contained many well-known compounds (all halogenated), but notably also five fluorinated compounds that were not included in the EINECS inventory. This study demonstrates the usability of in silico tools for identification of potentially environmentally hazardous chemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号