首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   218篇
  国内免费   707篇
安全科学   160篇
废物处理   110篇
环保管理   262篇
综合类   1286篇
基础理论   218篇
污染及防治   326篇
评价与监测   49篇
社会与环境   95篇
灾害及防治   315篇
  2024年   15篇
  2023年   83篇
  2022年   100篇
  2021年   103篇
  2020年   84篇
  2019年   95篇
  2018年   74篇
  2017年   103篇
  2016年   126篇
  2015年   134篇
  2014年   127篇
  2013年   168篇
  2012年   223篇
  2011年   251篇
  2010年   134篇
  2009年   127篇
  2008年   86篇
  2007年   124篇
  2006年   104篇
  2005年   80篇
  2004年   56篇
  2003年   39篇
  2002年   45篇
  2001年   62篇
  2000年   47篇
  1999年   27篇
  1998年   32篇
  1997年   32篇
  1996年   10篇
  1995年   33篇
  1994年   20篇
  1993年   30篇
  1992年   17篇
  1991年   12篇
  1990年   6篇
  1989年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1974年   1篇
  1967年   1篇
排序方式: 共有2821条查询结果,搜索用时 15 毫秒
151.
Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes.  相似文献   
152.
以福建三安钢铁有限公司为例,总结三安钢铁采取的一系列节能减排措施,同时提出创建清洁钢厂的对策与思路。  相似文献   
153.
依托湖北杭瑞高速公路工程,为降低沿线行车通过居民区带来的噪音污染,解决冬季路面积雪薄冰带来的行车安全问题,以具有一定结构除冰性能的高连通孔隙沥青路面材料为基体,选用橡胶高黏度改性沥青,并掺入环保型化学抑冰剂,开发设计具有除冰、降噪、抗滑功能材料路面。以不牺牲路用性能为前提,通过测试动稳定度、冻融劈裂强度比、飞散损失、抗剪强度等,确定环保型化学抑冰剂的掺量。同时利用驻波管法、手工铺砂法及轮碾法测定空隙率分别为16%、20%、24%、28%的路面材料除冰性能、降噪性能和抗滑性能。测试结果表明,当环保型融雪除冰剂的掺量为2%,空隙率控制在20%左右时,高连通孔隙沥青材料的路面使用性能最佳,具有较好的除冰性能、降噪性能和抗滑性能。  相似文献   
154.
碳源对微生物硝酸盐异化还原成铵过程的影响   总被引:1,自引:0,他引:1  
微生物通过异化性硝酸盐还原成铵(DNRA)途径,硝态氮转化为仍可生物再利用的铵盐。以琥珀酸钠、柠檬酸钠、酒石酸钾钠为碳源,研究碳源的差异对有氧条件下微生物通过DNRA途径产铵的影响。结果显示,以琥珀酸钠和柠檬酸钠为碳源,初始浓度为20 mmol/L是较佳的实验条件,此时C/N约为1.5~2.0,NH4+-N质量浓度30.0~45.0 mg/L,最高产铵率分别为29.9%和27.0%;以酒石酸钾钠为碳源则在初始浓度为30 mmol/L,C/N约为2.0,NH4+-N质量浓度为40.0~45.0 mg/L时,最高产铵率为30.7%。反硝化和DNRA过程是同时存在的,培养液中NO3--N浓度的下降伴随着中间产物NO2--N的积累和NH4+-N浓度的升高。  相似文献   
155.
采用移动通风槽技术对攀钢炼铁高炉矿槽除尘系统槽上原有吸尘点进行改造,改造后达到节能减排、降低成本的目的,具有一定的经济效益及环境效益.  相似文献   
156.
以磁性Fe_3O_4为载体负载Bi(NO_3)_3,再用NaBH_4还原Bi~(3+)制备了Bi/Fe_3O_4催化剂。采用XRD和紫外-可见光谱对催化剂进行表征。考察了Bi负载量、NaBH_4加入量和Bi/Fe_3O_4加入量对Bi/Fe_3O_4催化NaBH_4还原对硝基苯酚(4-NP)效果的影响。表征结果显示:当催化剂中Bi含量较少时,Bi分散良好;当Bi含量较多时,会形成纳米颗粒。实验结果表明:当反应温度为25℃,初始4-NP浓度为4.0 mmol/L时,在Bi负载量为5%(w)、Bi/Fe_3O_4催化剂加入量为500 mg/L,NaBH_4加入量为6.0 g/L的条件下,反应速率常数为0.581 min~(-1),4-NP的去除率为99.7%;Bi/Fe_3O_4催化剂稳定性好,重复使用15次后,活性基本不变。  相似文献   
157.
用硝酸浸取铜钨合金废料中的铜,再用亚硫酸钠还原硝酸铜制备氧化亚铜。采用X射线衍射仪对氧化亚铜进行表征,考察了氧化亚铜产品对溶液中甲基橙的光催化效果,并与分析纯五水硫酸铜制备的氧化亚铜进行了对比。实验结果表明:在硝酸浓度为5.6 mol/L,硝酸用量为2.5 m L/g(为理论用量的1.5倍),浸取温度为40℃,浸取时间为6 h的最优浸取条件下,铜浸取率稳定在87%以上;在还原反应温度为80℃、还原反应时间为4h、硝酸铜浓度为0.8 mol/L的条件下,可制备得到较高纯度的氧化亚铜;在甲基橙质量浓度为20 mg/L、氧化亚铜加入量为2 g/L,500 W氙灯照射时间为2.5 h的条件下进行光催化反应,甲基橙降解率可达93%以上。与分析纯五水硫酸铜制备的氧化亚铜相比,两者形貌相似、光催化效果基本相当。  相似文献   
158.
Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with 13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24 h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosm with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. 13C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (III) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-reducing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobacter and Desulfosporosinus. The findings suggest that ethanol biostimulates the U(VI)-reducing microbial community by first serving as an electron donor for nitrate, sulfate, iron (III) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.  相似文献   
159.
Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L−1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.  相似文献   
160.
中国政府承诺CO2排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。在工业部门深化应对气候变化和全面推进绿色转型的背景下,数量庞大的工业园区已然成为"十四五"乃至今后一个时期工业领域实现科学、精准碳减排的关键靶点。本研究首先剖析了中国工业园区低碳发展面临的挑战与机遇;进而以2015年为基准年,面向2035和2050年美丽中国建设两阶段战略目标,研究提出了工业园区碳减排的目标、路径和潜力,以期为园区深化低碳发展提供决策参考。研究显示,2015年中国工业园区CO2排放总量约为28亿吨,占全国总排放量的31%。通过产业结构调整、能效提升、能源结构优化、碳捕集等低碳路径,2015-2050年全国园区预期可减排CO2 18亿吨,在2015年基础上减排60%以上;其中,2015-2035年减排8亿吨,2035-2050年减排10亿吨。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号