首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   1篇
  国内免费   8篇
环保管理   20篇
综合类   31篇
基础理论   19篇
污染及防治   21篇
评价与监测   4篇
社会与环境   4篇
灾害及防治   2篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2011年   11篇
  2010年   5篇
  2009年   12篇
  2008年   11篇
  2007年   9篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1998年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有101条查询结果,搜索用时 406 毫秒
51.
Nicaragua is one of the four countries most affected by climate change, and coffee production is expected to vastly shrink in some critical areas. This can have considerable effects on social structure since nearly a third of its working population depend on coffee for a living. Social perceptions of climate change and water pressures are a key issue in the public's acceptance of adaptation measures. Furthermore, the existing risk for crop production is not necessarily correlated with the farmers’ awareness of that threat. This paper focuses on coffee producers’ perception of risk and adaptive capacity for coffee crops in Nicaragua in response to climate change and water availability. We aim to analyze how dependent the producers are on water resources, and if this reliance affects their perception of risk and their expectations with regard to public and private support for dealing with adaptation. A survey of 212 representative farmers of the national population of farms in the country's two most important production areas was conducted for this purpose. We consider socio-economic and biophysical variables to explain the farmers’ perceptions. Our findings show that experience and technical capacity are relevant to the adaptive capacity although smallholders do not always show high concern and their expectations with regard to external support are very low. The paper can be useful to prioritize the measures necessary for a greater level of involvement from stakeholders.  相似文献   
52.
As a silicon hyperaccumulator, lowland rice takes up higher levels of As than many other plants due to silicic acid and arsenite sharing the same transporters (Lsi1 and Lsi2). Glomus intraradices (AH01) was inoculated to rice under different arsenite concentrations (0, 2 and 8 μM) in order to investigate the interactions between arbuscular mycorrhizal fungus and rice on the accumulation of arsenite. The relative mRNA expressions of Lsi1 and Lsi2 resulted in a down-regulating trend in mycorrhizal plants. Under 2 μM arsenite treatments, Lsi1 and Lsi2 were significantly decreased, by 0.7-fold (P < 0.05) and 0.5-fold (P < 0.01), respectively, in mycorrhizal plants when compared with non-mycorrhizal plants. This led to the decrease of arsenite uptake per unit of root dry mass. No organic As species were detected in both roots and shoots. The As(III)/As(V) ratios indicated that mycorrhizal plants immobilized most of the arsenite proportion in the roots and prevented its translocation from the roots to the shoots.  相似文献   
53.
Land Degradation: A Challenge to Ethiopia   总被引:11,自引:3,他引:8  
Land degradation is a great threat for the future and it requires great effort and resources to ameliorate. The major causes of land degradation in Ethiopia are the rapid population increase, severe soil loss, deforestation, low vegetative cover and unbalanced crop and livestock production. Inappropriate land-use systems and land-tenure policies enhance desertification and loss of agrobiodiversity. Utilization of dung and crop residues for fuel and other uses disturbs the sustainability of land resources. The supply of inputs such as fertilizer, farm machinery and credits are very low. The balance between crop, livestock, and forest production is disturbed, and the farmer is forced to put more land into crop production. For environmentally and socially sustainable development, there is an urgent need to promote awareness and understanding of the interdependence of natural, socioeconomic, and political systems at local and national levels. Understanding the current status and causes of land degradation is very important. This paper reveals the important elements of land degradation in Ethiopia and suggests possible solutions that may help to ameliorate the situation.  相似文献   
54.
Ensuring food security has been one of the major national priorities of Bangladesh since its independence in 1971. Now, this national priority is facing new challenges from the possible impacts of climate change in addition to the already existing threats from rapid population growth, declining availability of cultivable land, and inadequate access to water in the dry season. In this backdrop, this paper has examined the nature and magnitude of these threats for the benchmark years of 2030 and 2050. It has been shown that the overall impact of climate change on the production of food grains in Bangladesh would probably be small in 2030. This is due to the strong positive impact of CO2 fertilization that would compensate for the negative impacts of higher temperature and sea level rise. In 2050, the negative impacts of climate change might become noticeable: production of rice and wheat might drop by 8% and 32%, respectively. However, rice would be less affected by climate change compared to wheat, which is more sensitive to a change in temperature. Based on the population projections and analysis of future agronomic innovations, this study further shows that the availability of cultivable land alone would not be a constraint for achieving food self-sufficiency, provided that the productivity of rice and wheat grows at a rate of 10% or more per decade. However, the situation would be more critical in terms of water availability. If the dry season water availability does not decline from the 1990 level of about 100 Bm3, there would be just enough water in 2030 for meeting both the agricultural and nonagricultural needs. In 2050, the demand for irrigation water to maintain food self-sufficiency would be about 40% to 50% of the dry season water availability. Meeting such a high agricultural water demand might cause significant negative impacts on the domestic and commercial water supply, fisheries, ecosystems, navigation, and salinity management.  相似文献   
55.
Phytoremediation of Soil Polluted by Nickel Using Agricultural Crops   总被引:3,自引:0,他引:3  
Soil pollution due to heavy metals is widespread; on the world scale, it involves about 235 million hectares. The objectives of this research were to establish the uptake efficiency of nickel by some agricultural crops. In addition, we wanted to establish also in which part of plants the metal is stored for an eventual use of biomass or for recycling the metal. The experiments included seven herbaceous crops such as: barley (Hordeum vulgaris), cabbage (Brassica juncea), spinach (Spinacea oleracea), sorghum (Sorgum vulgare), bean (Phaseolus vulgaris), tomato (Solanum lycopersicum), and ricinus (Ricinus communis). We used three levels of treatment (150, 300, and 600 ppm) and one control. At the end of the biological cycle of the crops, the different parts of plants, i.e., roots, stems, leaves, fruits, or seeds, were separately collected, oven dried, weighed, milled, and separately analysed. The leaves and stems of spinach showed a very good nickel storage capacity. The ricinus too proved to be a very good nickel storer. The ability of spinach and ricinus to store nickel was observed also in the leaves of cabbage, even if with a lower storage capacity. The bean, barley, and tomato, in decreasing order of uptake and storage capacity, showed a high concentration of nickel in leaves and stems, whereas the sorghum evidenced a lesser capacity to uptake and store nickel in leaves and stems. The bean was the most efficient in storing nickel in fruits or grains. Tomato, sorghum, and barley have shown a storage capacity notably less than bean. The bean appeared to be the most efficient in accumulating nickel in the roots, followed in decreasing order by sorghum, ricinus, and tomato. With regard to the removal of nickel, spinach was the most efficient as it contains the highest level of this metal per gram of dry matter. The ricinus, cabbage, bean, sorghum, barley, and tomato evidenced a progressively decreasing efficiency in the removal of nickel.  相似文献   
56.
Cereal crop farmers in the Western Cape province of South Africa regard the Egyptian Goose as a serious pest. The Agulhas Plain, in particular, attracts thousands of geese annually primarily because of the abundance and availability of nutritious crops such as wheat Triticum spp. and barley Hordeum spp. for food and permanent water bodies for roosting, moulting and breeding. Therefore, this paper investigates the population dynamics and physical and financial impacts to cereal crops of the Egyptian Goose on the Agulhas Plain, Western Cape. Egyptian Geese inflict damage during three main periods, viz. soon after sowing (surface seeds); young, developing plants (growing plants); and cut plants stacked in windrows (long, linear piles) to dry. The largest numbers of geese were recorded during June and July when they foraged on growing plants less than 25 cm tall. Overall, the mean yield loss was 65.6% in 1997 and 63.5% in 1998. Fields suffering greatest yield loss in 1997 and 1998 were generally those within 600 m of the roosting sites and had about 300 geese grazing on them on areas of around 2 ha in size for about 2 months. By August, geese moved from croplands on to pastures. During October and November, geese once again fed primarily on barley seeds in harvested crops stacked in windrows. Damage by geese to farmers was estimated to be >2.5 and 7% of annual revenue received from barley and wheat farming, in 1997 and 1998, respectively. There are many variables that need to be considered when attempting to quantify and explain damage to cereal crops by Egyptian Geese.  相似文献   
57.
Soybean (Glycine max (L.) Merr.) is becoming increasingly important in the cereal-based cropping system of the Nigerian Guinea savanna zone and this justifies research on its effects on soil N. Although soybean can obtain 50% or more of its N requirement from the atmosphere, the N contribution of the crop to the system depends on the amount of N contained in roots, haulms, and fallen leaves after grain harvest. At four sites in the northern Guinea savanna, the effects on N balance of P fertilizer and soybean varieties of different duration were tested. The varieties received P fertilizer at the rates of 0, 30, and 60 kg P ha−1. The total N accumulated aboveground at harvest averaged 104 kg N ha−1 in the early and medium varieties, and 135 kg N ha−1 in the late varieties. Across all varieties and sites, total N content was increased by 40–47% when P was applied. Apparent N harvest index averaged 85% but was not significantly affected by variety or P rate. When only grain was exported, the calculated N balance of the early and the medium varieties was −2.6 to −12.2 kg N ha−1 while the longer duration varieties had positive N balances ranging from 2 to 10.9 kg N ha−1. The N accrual was negative when P was not applied and ranged from 2.4 to 5.2 kg N ha−1 with P application. The interaction of variety and site on the N balance was significant at P<0.05. N balance at the southernmost site was −14.2 kg N ha−1 compared with 2.6–10 kg N ha−1 at the northern sites where N2 fixation was higher. The estimate of N balance is reduced when soybean haulms are exported. A positive N contribution by soybean is, therefore, possible in a soybean–cereal rotation when: (i) P is applied, (ii) the soybean variety is late maturing, and (iii) only grain is exported.  相似文献   
58.
有机农业土壤培肥的理论与方法   总被引:1,自引:0,他引:1  
根据有机农业培肥理论,从有机肥的特性,作物品质及生长规律,土壤性质和合理轮作复种等方面简述有机土壤培肥技术。  相似文献   
59.
通过连续多年的系统监测和分析,研究了小型铅盐生产企业对周边大气、水、土壤、河流底质和农作物等生态环境的影响.研究发现,生产车间和距其100 m以外的居民区大气中铅尘分别超标548倍和4倍;500 m以外的农田土壤中铅超标1.26倍;雨水排放口附近河道水质中铅超标1.08倍;雨水排放口附近及下游800 m处的河道底质中铅分别超标1.99倍和1.33倍;500 m以外种植的小麦籽粒中铅超标16.5倍.环境污染的程度与距污染源的空间距离呈负相关.在此,还对小型重金属生产企业的环境监测和防止污染的转移提出了建议.  相似文献   
60.
A model, PIXGRO, developed by coupling a canopy flux sub-model (PROXELNEE; PROcess-based piXEL Net Ecosystem CO2 Exchange) to a vegetation structure submodel (CGRO), for simulating both net ecosystem CO2 exchange (NEE) and growth of spring barley is described. PIXGRO is an extension of the stand-level CO2 and H2O-flux model PROXELNEE, that simulates the NEE on a process basis, but goes further to include the dry matter production, partitioning, and crop development for spring barley. Dry matter partitioned to the leaf was converted to leaf area index (LAI) using relationships for the specific leaf area (SLA). The canopy flux component, PROXELNEE was calibrated using information from the literature on C3 plants and was tested using CO2 flux data from an eddy-covariance (EC) method in Finland with long-term observations. The growth component (CGRO) was calibrated using data from the literature on spring barley as well as data from the Finland site. It was then validated against field data from two sites in Germany and partly via the use of MODIS remotely sensed LAI from the Finland site.Both the diurnal and the seasonal patterns of gross CO2 uptake were very well simulated (R2 = 0.92). A slight seasonal bias may be attributed to leaf ageing. Crop growth was also well simulated; simulated dry matter agreed with field observed data from Germany (R2 = 0.90). For LAI, the agreement between the simulated and observed was good (R2 = 0.80), giving an indication that functions describing the conversion of fixed CO2 to dry matter and the subsequent partitioning leaf dry matter and LAI simulation were robust and provided reliable estimates.The MODIS LAI at a resolution of 1000 m agreed poorly (R2 = 0.45) with the PIXGRO simulated LAI and the observed LAI at the Finland site in 2001. We attributed this to the coarse resolution of the image and/or the small size of the barley field (about 17 ha or 0.25 km2) at the Finland site. By deriving a regression relation between the observed LAI and NDVI from a higher resolution MODIS (500 m resolution), the MODIS-recalculated LAI agreed better with the PIXGRO-simulated LAI (R2 = 0.86).PIXGRO provides a prototype model bridging the disciplines of plant physiology, crop modeling and remote sensing, for use in a spatial context in evaluating carbon balances and plant growth at stand level, landscape, regional, and with some care, continental scales. Since almost 50% of the European land surface is covered by crops, such a model is needed for the dynamic estimation of LAI and NEE of croplands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号