首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   30篇
  国内免费   24篇
安全科学   52篇
环保管理   263篇
综合类   460篇
基础理论   147篇
环境理论   1篇
污染及防治   57篇
评价与监测   115篇
社会与环境   46篇
灾害及防治   13篇
  2024年   3篇
  2023年   11篇
  2022年   12篇
  2021年   24篇
  2020年   54篇
  2019年   12篇
  2018年   14篇
  2017年   31篇
  2016年   37篇
  2015年   25篇
  2014年   49篇
  2013年   41篇
  2012年   38篇
  2011年   74篇
  2010年   41篇
  2009年   86篇
  2008年   60篇
  2007年   64篇
  2006年   60篇
  2005年   37篇
  2004年   33篇
  2003年   52篇
  2002年   47篇
  2001年   29篇
  2000年   41篇
  1999年   35篇
  1998年   25篇
  1997年   13篇
  1996年   13篇
  1995年   21篇
  1994年   8篇
  1993年   19篇
  1992年   13篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1977年   1篇
排序方式: 共有1154条查询结果,搜索用时 125 毫秒
701.
Many rural communities in British Columbia (western Canada) are at risk from wildfire. This risk will increase over time as a result of climate change because of higher average temperatures, longer growing seasons, and more intense droughts. On the other hand, these communities are also faced with rising fuel costs and a growing demand for heat as suburban population increases. The fact these communities are surrounded by forests presents an opportunity to combine community wildfire risk abatement with bioenergy development. Additional co-benefits include: (1) reduced community energy expenditures; (2) the creation of local jobs; (3) climate change mitigation; and (4) increased community energy security. Here, we present results from three pilot rural communities (Burns Lake, Invermere, and Sicamous, all of them in British Columbia) designed to evaluate the feasibility of wildfire risk abatement in conjunction with bioenergy production. Maps were created showing each community's forest–urban interface area with quantified estimates of its sustainable woody biomass resource potential under different management scenarios while monitoring ecosystem and soil health. The results and experience gained through this work has been synthesized in a calculator tool to help other communities make their own screening-level assessments. This calculator is a freely available on-line tool: FIRST Heat.  相似文献   
702.
Ecological degradation and hydraulic dispersion of contaminant in wetland   总被引:1,自引:0,他引:1  
For the typical case of a pulsed contaminant emission into a free surface wetland flow, a theoretical analysis is presented in this paper for the decay of the depth-averaged concentration under the combined action of ecological degradation and hydraulic dispersion. Based on a first-order reaction model extensively employed in related ecological risk assessment and environmental hydraulic design, the effect of ecological degradation is separated from the hydraulic effect via an exponential transformation for the general formulation for contaminant transport. The speed profile of a fully developed steady flow through the wetland is obtained. A hydraulic dispersion model for the depth-averaged concentration is devised as an extension of Taylor’s classical analysis on dispersion, and corresponding hydraulic dispersivity is obtained by Aris’s method of moments. Analytical solution of depth-averaged concentration is rigorously derived and characterized. For typical pollutant constituents in wastewater emission, the evolution of contaminant cloud in the wetland flow is illustrated by critical length and duration of influenced region with contaminant concentration beyond given environmental standard level, with essential implications for ecological risk assessment and environmental management.  相似文献   
703.
Restoration of abandoned and degraded ecosystems through enhanced management of mature remnant patches and naturally regenerating (regrowth) forests is currently being used in the recovery of ecosystems for biodiversity protection and carbon sequestration. Knowledge of long-term dynamics of these ecosystems is often very limited. Vegetation models that examine long-term forest growth and succession of uneven aged, mixed-species forest ecosystems are integral to the planning and assessment of the recovery process of biodiversity values and biomass accumulation. This paper examined the use of the Ecosystem Dynamics Simulator (EDS) in projecting growth dynamics of mature remnant brigalow forest communities and recovery process of regrowth brigalow thickets. We used data from 188 long-term monitored plots of remnant and regrowth forests measured between 1963 and 2010. In this study the model was parameterised for 34 tree and shrub species and tested with independent long-term measurements. The model closely approximated actual development trajectories of mature forests and regrowth thickets but some inaccuracies in estimating regeneration through asexual reproduction and mortality were noted as reflected in stem density projections of remnant plots that had a mean of absolute relative bias of 46.2 (±12.4)%. Changes in species composition in remnant forests were projected with a 10% error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha−1 and EDS projections between 1966 and 2005 (39 years) were 68.2 (±10.9)% of the observed basal area. Projected live aboveground biomass of remnant plots had a mean of 93.5 (±5.9) t ha−1 compared to a mean of 91.3 (±8.0) t ha−1 observed in the plots. In regrowth thicket, the model produced satisfactory projections of tree density (91%), basal area (89%), height (87%) and aboveground biomass (84%) compared to the observed attributes. Basal area and biomass accumulation in 45-year-old regrowth plots was approximately similar to that in remnant forests but recovery of woody understorey was very slow. The model projected that it would take 95 years for the regrowth to thin down to similar densities observed in original or remnant brigalow forests. These results indicated that EDS can produce relatively accurate projections of growth dynamics of brigalow regrowth forests necessary for informing restoration planning and projecting biomass accumulation.  相似文献   
704.
Examining the potential for ecological restoration is important in areas where anthropogenic disturbance has degraded forest landscapes. However, the conditions under which restoration of degraded tropical dry forests (TDF) might be achieved in practice have not been determined in detail. In this study, we used LANDIS-II, a spatially explicit model of forest dynamics, to assess the potential for passive restoration of TDF through natural regeneration. The model was applied to two Mexican landscapes under six different disturbance regimes, focusing on the impact of fire and cattle grazing on forest cover, structure and composition. Model results identified two main findings. First, tropical dry forests are more resilient to anthropogenic disturbance than expected. Results suggested that under both a scenario of small, infrequent fires and a scenario of large, frequent fires, forest area can increase relatively rapidly. However, forest structure and composition differed markedly between these scenarios. After 400 years, the landscape becomes increasingly occupied by relatively shade-tolerant species under small, infrequent fires, but only species with both relatively high shade tolerance and high fire tolerance can thrive under conditions with large, frequent fires. Second, we demonstrated that different forms of disturbance can interact in unexpected ways. Our projections revealed that when grazing acts in combination with fire, forest cover, structure and composition vary dramatically depending on the frequency and extent of the fires. Results indicated that grazing and fire have a synergistic effect causing a reduction in forest cover greater than the sum of their individual effects. This suggests that passive landscape-scale restoration of TDF is achievable in both Mexican study areas only if grazing is reduced, and fires are carefully managed to reduce their frequency and intensity.  相似文献   
705.
The Japanese National Biodiversity Strategy 2010 calls for the creation of ecological networks as a biodiversity conservation policy. However, there is an obvious lack of information on the spatial distribution of many species and a lack of scientific methods for examining habitat requirements to establish the need for constructing these networks for target species. This study presents a quantitative method for assessing the need for ecological networks through modeling the potential geographic distributions of species based on a case study of local populations of Asiatic black bear (Ursus thibetanus japonicus) in Fuji and Tanzawa, Japan. A total of 1541 point records of occurrences of Asiatic black bears and 11 potential predictors were analyzed in a GIS environment. After a predictive distributional map was obtained using the Maximum Entropy (MaxEnt) algorithm, a gap analysis was carried out and population size was estimated. Approximately 24% of the bear's predicted habitat area fell within a wildlife protection area, 2% within a nature reserve, and 37% within natural parks. Conservation forest comprised 54% of the total area of predicted habitat; of this, national forest comprised 2%, and private and communal forest comprised 37%. The total estimated Asiatic black bear population in this region was 242, with 179 individuals in the Fuji local population, 26 in the Tanzawa local population, and 37 in the corridor patch between the two local populations. Our study also found a potential corridor connecting the Fuji and Tanzawa local populations, as well as potential habitat corridors in the Fuji region containing subpopulations on Mt. Fuji (119 individuals) and Mt. Kenashi (53 individuals). An additional subpopulation on Mt. Ashitaka (7 individuals) is isolated and not fully protected by a zoning plan. Mt. Furo's subpopulation is considered to be almost extinct, although black bears were observed here until 2002 based on the report by Mochizuki et al. (2005). The total black bear population of the Fuji-Tanzawa region is considered to be “endangered”; thus, an adequate population size might be difficult to maintain even if this region were to be internally connected by means of an ecological network.  相似文献   
706.
Towards a 3D National Ecological Footprint Geography   总被引:11,自引:0,他引:11  
In the last decades several indicators have been proposed to guide decision makers and help manage natural capital. Among such indicators is the Ecological Footprint, a resource accounting tool with a biophysical and thermodynamic basis. In our recent paper (Niccolucci et al., 2009), a three dimensional Ecological Footprint (3DEF) model was proposed to better explain the difference between human demand for natural capital stocks and resource flows. Such 3DEF model has two relevant dimensions: the surface area (or Footprint size - EFsize) and the height (or Footprint depth - EFdepth). EFsize accounts for the human appropriation of the annual income from natural capital while EFdepth accounts for the depletion of stocks of natural capital and/or the accumulation of stocks of wastes. Building on the 2009 Edition of the National Footprint Accounts (NFA), global trends (from 1961 to 2006) for both EFsize and EFdepth were analyzed. EFsize doubled from 1961 to 1986; after 1986 it reached an asymptotic value equal to the Earth's biocapacity (BC) and remained constant. Conversely, EFdepth remained constant at the “natural depth” value until 1986, the year in which global EF first exceeded Earth's BC. A growing trend was observed after that. Trends in each Footprint land type were also analyzed to better appraise the land type under the higher human induced stress. The usefulness of adopting such 3DEF model in the National Footprint Accounts was also discussed. In comparing any nation's demand for ecological assets with its own biocapacity in a given year, four hypothetical cases were identified which could serve as the basis for a new Footprint geography based on both size and depth concepts. This 3DEF model could help distinguish between the use of natural capital flows and the depletion of natural capital stocks while maintaining the structure and advantages of the classical Ecological Footprint formulation.  相似文献   
707.
This paper presented a thermodynamic synthesis that involved resource accounting, evaluation and modeling of urban ecosystems based on embodied cosmic exergy (EcE), which redefined embodied exergy with the cosmic microwave background radiation (CMBR) as the reference for solar exergy. In a case study of the Beijing urban ecosystem, the major resources supporting the urban ecosystem, both from free natural resources and from the economy, were accounted for, analyzed and evaluated in the same units, Cosmic Joules (Jc). These indicators revealed the current performance of the Beijing urban ecosystem by considering five aspects of the system: EcE sources, EcE intensity, EcE welfare, environmental impacts and economic efficiency. Moreover, through the combination of the EcE synthesis with a systems dynamics, this research constructed an embodied cosmic exergy-based urban system model (EESM) using Beijing as an example of urban development. The results show that the 10 years from 2010 to 2020 will be very critical for the sustainable development of Beijing because many key factors, such as water resources, wastes and urban assets, might be confronted with great changes during this period. These changes will inevitably transform the urban system not only in its external circumstances but also in its inner structure and may lead to serious consequences. Of all the necessary resources, the most sensitive factor is water supply.  相似文献   
708.
Because of increasing transport and trade there is a growing threat of marine invasive species being introduced into regions where they do not presently occur. So that the impacts of such species can be mitigated, it is important to predict how individuals, particularly passive dispersers are transported and dispersed in the ocean as well as in coastal regions so that new incursions of potential invasive species are rapidly detected and origins identified. Such predictions also support strategic monitoring, containment and/or eradication programs. To determine factors influencing a passive disperser, around coastal New Zealand, data from the genus Physalia (Cnidaria: Siphonophora) were used. Oceanographic data on wave height and wind direction and records of occurrences of Physalia on swimming beaches throughout the summer season were used to create models using artificial neural networks (ANNs) and Na?ve Bayesian Classifier (NBC). First, however, redundant and irrelevant data were removed using feature selection of a subset of variables. Two methods for feature selection were compared, one based on the multilayer perceptron and another based on an evolutionary algorithm. The models indicated that New Zealand appears to have two independent systems driven by currents and oceanographic variables that are responsible for the redistribution of Physalia from north of New Zealand and from the Tasman Sea to their subsequent presence in coastal waters. One system is centred in the east coast of northern New Zealand and the other involves a dynamic system that encompasses four other regions on both coasts of the country. Interestingly, the models confirm, molecular data obtained from Physalia in a previous study that identified a similar distribution of systems around New Zealand coastal waters. Additionally, this study demonstrates that the modelling methods used could generate valid hypotheses from noisy and complicated data in a system about which there is little previous knowledge.  相似文献   
709.
Using known occurrences of species and correlational modeling approaches has become a common paradigm in broad-scale ecology and biogeography, yet important aspects of the methodology remain little-explored in terms of conceptual basis. Here, we explore the conceptual and empirical reasons behind choice of extent of study area in such analyses, and offer practical, but conceptually justified, reasoning for such decisions. We assert that the area that has been accessible to the species of interest over relevant time periods represents the ideal area for model development, testing, and comparison.  相似文献   
710.
We examined the connection between individuals’ relationships with the natural environment and their environmental behaviors with a focus on commitment to the environment, defined as psychological attachment and long-term orientation to the natural world. Commitment is theorized to emerge from structural interdependence with the environment and to lead to pro-environmental behaviors. Close relationships research has identified three key antecedents to commitment (satisfaction, alternatives, and investments). We developed environment-specific measures of these constructs, and factor analysis verified three distinct factors. A path analysis revealed that satisfaction with the environment and investments in the environment, but not alternatives to the environment, predicted commitment to the environment. Moreover, commitment mediated the effects of satisfaction and investments on general ecological behavior and willingness to sacrifice for the environment. In regression analyses, commitment predicted general ecological behavior and willingness to sacrifice for the environment, even when controlling for ecological worldview, inclusion of nature in the self, connectedness to nature, and environmental identity. Individuals who are satisfied with and invested in the natural world are likely to be committed to the environment and act with the well-being of the environment in mind.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号