首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   39篇
  国内免费   69篇
安全科学   80篇
废物处理   14篇
环保管理   299篇
综合类   151篇
基础理论   337篇
环境理论   1篇
污染及防治   77篇
评价与监测   48篇
社会与环境   46篇
灾害及防治   17篇
  2023年   14篇
  2022年   11篇
  2021年   28篇
  2020年   25篇
  2019年   17篇
  2018年   10篇
  2017年   17篇
  2016年   32篇
  2015年   25篇
  2014年   22篇
  2013年   61篇
  2012年   26篇
  2011年   78篇
  2010年   48篇
  2009年   85篇
  2008年   61篇
  2007年   47篇
  2006年   69篇
  2005年   44篇
  2004年   30篇
  2003年   29篇
  2002年   29篇
  2001年   21篇
  2000年   22篇
  1999年   12篇
  1998年   21篇
  1997年   14篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1981年   9篇
  1980年   7篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1975年   3篇
  1973年   5篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
排序方式: 共有1070条查询结果,搜索用时 421 毫秒
291.
九华山国内客源市场空间结构与出游行为研究   总被引:6,自引:3,他引:6  
汪德根 《资源开发与市场》2004,20(5):342-344,347
在实地调查的基础上,分析了九华山国内客源市场空间结构及其演变特征,得出国内客源市场集中程度降低、客源吸引力不断增强、波浪式推进的演变结论,并探讨了九华山旅游行为空间模式主要以单一目的地旅游模式和区域旅游模式为主,根据旅游意向调查结果显示,九华山与黄山在客源市场方面具有较强的互补性。  相似文献   
292.
Mental models of safety: do managers and employees see eye to eye?   总被引:5,自引:0,他引:5  
PROBLEM: Disagreements between managers and employees about the causes of accidents and unsafe work behaviors can lead to serious workplace conflicts and distract organizations from the important work of establishing positive safety climate and reducing the incidence of accidents. METHOD AND RESULTS: In this study, the authors examine a model for predicting safe work behaviors and establish the model's consistency across managers and employees in a steel plant setting. Using the model previously described by Brown, Willis, and Prussia (2000), the authors found that when variables influencing safety are considered within a framework of safe work behaviors, managers and employees share a similar mental model. The study then contrasts employees' and managers' specific attributional perceptions. Findings from these more fine-grained analyses suggest the two groups differ in several respects about individual constructs. Most notable were contrasts in attributions based on their perceptions of safety climate. When perceived climate is poor, managers believe employees are responsible and employees believe managers are responsible for workplace safety. However, as perceived safety climate improves, managers and employees converge in their perceptions of who is responsible for safety. IMPACT ON INDUSTRY: It can be concluded from this study that in a highly interdependent work environment, such as a steel mill, where high system reliability is essential and members possess substantial experience working together, managers and employees will share general mental models about the factors that contribute to unsafe behaviors, and, ultimately, to workplace accidents. It is possible that organizations not as tightly coupled as steel mills can use such organizations as benchmarks, seeking ways to create a shared understanding of factors that contribute to a safe work environment. Part of this improvement effort should focus on advancing organizational safety climate. As climate improves, managers and employees are likely to agree more about the causes of safe/unsafe behaviors and workplace accidents, ultimately increasing their ability to work in unison to prevent accidents and to respond appropriately when they do occur. Finally, the survey items included in this study may be useful to organizations wishing to conduct self-assessments.  相似文献   
293.
In Rocky Mountain National Park (RMNP), aspen (Populus tremuloides Michx.) has been observed to be declining on elk (Cervus elaphus nelsoni) winter range for many decades. To support elk management decisions, the SAVANNA ecosystem model was adapted to explore interactions between elk herbivory and aspen dynamics. The simulated probability of successful vegetative regeneration for senescent aspen stands declines sharply when elk densities reach levels of 3–5 elk/km2, depending on model assumptions for the seasonal duration of elk foraging activities. For aspen stands with a substantial component of younger trees, the simulated regeneration probability declines more continuously with increasing elk density, dropping below 50% from densities at 8–14 elk/km2.At the landscape scale, simulated aspen regeneration probability under a scenario of extensive seasonal use was little affected by elk population level, when this level was above 300–600 elk (25%–50% current population) over the ca. 107 km2 winter range. This was because elk distribution was highly aggregated, so that a high density of elk occupied certain areas, even at low population levels overall. At approximately current elk population levels (1000–1200 elk), only 35%–45% of senescent aspen stands are simulated as having at least a 90% probability of regeneration, nearly all of them located on the periphery of the winter range. Successful management for aspen persistence on core winter range will likely require some combination of elk population reduction, management of elk distribution, and fencing to protect aspen suckers from elk browsing.  相似文献   
294.
/ An effective groundwater protection program requires understanding of water flow and contaminant transport processes in the subsurface. Although many mathematical models have been developed to simulate the processes, few actually are used in groundwater protection programs due to the difficulties in data collection, model selection, and model implementation. This study presents a conceptual design of a GIS-supported model selection system that evaluates available data and mathematical models to facilitate groundwater protection programs. Steady-state groundwater and contaminant transport models applied in isotropic aquifers are placed into four classes to simulate conservative or nonconservative contaminant transports in simple or complex geohydrological conditions. After analyzing specific study objectives, available data, and model requirements, the proposed system selects a class of models that can be used in simulation and recommends any need for additional data collection. This study initiates an effort to integrate GIS, mathematical models, and expert knowledge in one system to promote the application of appropriate groundwater models. The new technology of GIS and digital data-base management makes it possible to develop such a system in practice.KEY WORDS: Groundwater models; Geographic information systems  相似文献   
295.
The rapid increase in atmospheric concentrations of greenhouse gases has caused concern because of their potential to alter the earth's radiation budget and disrupt current climate patterns While there are many uncertainties associated with use of general circulation models (GCMs), GCMs are currently the best available technology to project changes in climate associated with elevated gas concentrations. Results indicate increases in global temperature and changes in global precipitation patterns are likely as a result of doubled CO2. GCMs are not reliable for use at the regional scale because local scale processes and geography are not taken into account. Comparison of results from five GCMs in three regions of the United States indicate high variability across regions and among models depending on season and climate variable. Statistical methods of scaling model output and nesting finer resolution models in global models are two techniques that may improve projections. Despite the many limitations in GCMs, they are useful tools to explore climate-earth system dynamics when used in conjunction with water resource and ecosystem models. A variety of water resource models showed significant alteration of regional hydrology when run with both GCM-generated and hypothetical climate scenarios, regardless of region or model complexity. Similarly, ecological models demonstrate the sensitivity of ecosystem production, nutrient dynamics, and distribution to changes in climate and CO2 levels. We recommend the use of GCM-based scenarios in conjunction with water resource and ecosystem models to guide environmental management and policy in a “no-regrets” framework or as part of a precautionary approach to natural resource protection.  相似文献   
296.
ABSTRACT: Model predictions of the relatively simple soil compartment model SESOIL are compared with those of the more data-intensive terrestrial ecosystem hydrology model AGTEHM. Comparisons were performed using data from a deciduous forest stand watershed, a grassland watershed, and two agricultural field plots. Good agreement was obtained between model predictions for annual values of infiltration, evapotranspiration, surface runoff, and groundwater runoff. SESOIL model predictions also compare well with empirical measurements at the forest stand and the grassland watersheds.  相似文献   
297.
ABSTRACT: A semi-distributed deterministic model for real-time flood forecasting in large basins is proposed. Variability of rainfall and losses in space is preserved and the effective rainfall-direct runoff model segment based on the Clark procedure is incorporated. The distribution of losses in space is assumed proportional to rainfall intensity and their evolution in time is represented by the φ-index; furthermore, an initial period without production of effective rainfall is considered. The first estimation of losses and the associated forecasts of flow are performed at the time corresponding to the first rise observed in the hydrograph. Then the forecasts of flow are corrected at each subsequent time step through the updating of the φ-index. The model was tested by using rainfall-runoff events observed on two Italian basins and the predictions of flow for lead times up to six hours agree reasonably well with the observations in each event. For example, for the coefficient of persistence, which compares the model forecasts with those generated by the no-model assumption, appreciable positive values were computed. In particular, for the larger basin with an area of 4,147 km2, the mean values were 0.4, 0.4 and 0.5 for forecast lead times of two hours, four hours and six hours, respectively. Good performance of the model is also shown by a comparison of its flow predictions with those derived from a unit hydrograph based model  相似文献   
298.
Remotely sensed variables such as land cover type and snow-cover extent can currently be used directly and effectively in a few specific hydrologic models. Regression models can also be developed using physiographic and snow-cover data to permit estimation of discharge characteristics over extended periods such as a season or year. Most models, however, are not of an appropriate design to readily accept as input the various types of remote sensing parameters that can be obtained now or in the future. Because this new technology has the potential for producing hydrologic data that has significant information content on an areal basis, both inexpensively and repetitively, effort should be devoted now to either modifying existing models or developing new models that can use these data. Minor modifications would at least allow the remote sensing data to be used in an ancillary way to update the model state variables, whereas major structural modifications or new models would permit direct input of the data through remote sensing compatible algorithms. Although current remote sensing inputs to hydrologic models employ only visible and near infrared data, model modification or development should accommodate microwave and thermal infrared data that will be more widely available in the future.  相似文献   
299.
The British Ecological Society has suggested that computer‐based techniques could be used in the coordination of policies across different land uses in upland planning. This paper looks briefly at one such technique — a linear programming model — and describes its use at a regional scale for the Sedburgh area in north‐west England. The paper concludes with consideration of why such models are not in more common use.  相似文献   
300.
A sensitivity analysis of a computer model, simulating major water and nitrogen processes of a soil-water-plant-climatic system on an annual basis, was conducted to determine how the model reacts to the variations in selected hydrologic and nitrogen parameters. Two major output variables (namely, total subsurface drain volume and cumulative nitrate loss with subsurface drain water) were selected for the sensitivity analysis. Model sensitivity analysis shows that the model is most sensitive to hydrologic parameters. The model is very sensitive to variations in the initial water content in the soil profile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号