首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   74篇
  国内免费   56篇
安全科学   87篇
废物处理   14篇
环保管理   317篇
综合类   195篇
基础理论   350篇
环境理论   1篇
污染及防治   85篇
评价与监测   48篇
社会与环境   46篇
灾害及防治   19篇
  2024年   19篇
  2023年   31篇
  2022年   14篇
  2021年   38篇
  2020年   36篇
  2019年   28篇
  2018年   14篇
  2017年   27篇
  2016年   35篇
  2015年   26篇
  2014年   22篇
  2013年   61篇
  2012年   30篇
  2011年   78篇
  2010年   48篇
  2009年   85篇
  2008年   61篇
  2007年   47篇
  2006年   69篇
  2005年   44篇
  2004年   30篇
  2003年   29篇
  2002年   29篇
  2001年   21篇
  2000年   22篇
  1999年   12篇
  1998年   21篇
  1997年   14篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1981年   9篇
  1980年   7篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
331.
Biological damage to sensitive aquatic ecosystems is among the most recognisable, deleterious effects of acidic deposition. We compiled a large spatial database of over 2000 waterbodies across southeastern Canada from various federal, provincial and academic sources. Data for zooplankton, fish, macroinvertebrate (benthos) and loon species richness and occurrence were used to construct statistical models for lakes with varying pH, dissolved organic carbon content and lake size. pH changes, as described and predicted using the Integrated Assessment Model (Lam et al., 1998; Jeffries et al., 2000), were based on the range of emission reductions set forth in the Canada/US Air Quality Agreement (AQA). The scenarios tested include 1983, 1990, 1994 and 2010 sulphate deposition levels. Biotic models were developed for five regions in southeastern Canada (Algoma, Muskoka, and Sudbury, Ontario, southcentral Québec, and Kejimkujik, Nova Scotia) using regression tree, multiple linear regression and logistic regression analyses to make predictions about recovery after emission reductions. The analyses produced different indicator species in different regions, although some species showed consistent trends across regions. Generally, the greatest predicted recovery occurred during the final phase of emission reductions between 1994 and 2010 across all taxonomic groups and regions. The Ontario regions, on average, were predicted to recover to a greater extent than either southcentral Québec or the Kejimkujik area of Nova Scotia. Our results reconfirm that pH 5.5–6.0 is an important threshold below which damage to aquatic biota will remain a major local and regional environmental problem. This damage to biodiversity across trophic levels will persist well into the future if no further reductions in sulphate deposition are implemented.  相似文献   
332.
区域及全球尺度的NPP过程模型和NPP对全球变化的响应   总被引:1,自引:0,他引:1  
植被净第一性生产力(NPP)不仅是表征植被活动和生态过程的关键参数,而且是判定生态系统碳汇和反映生态系统对全球变化响应的主要因子。当前,模型模拟成为大尺度NPP研究的主要手段,而在众多NPP估算模型中,过程模型逐渐趋于主导地位。虽然目前有关NPP的研究有很多,但还没有关注于大尺度上应用的过程模型及其模拟的NPP对全球变化的响应。因此本文主要侧重于 NPP 过程模型在区域及全球尺度上的应用,具体包含以下内容,①进一步将区域及全球尺度的NPP过程模型分为静态植被模型和动态植被模型。②阐明这些模型间存在的区别与联系。③归纳出NPP过程模型在区域及全球尺度上应用的3大挑战:时空尺度转换、多源数据的获取与融合以及模型模拟结果的验证与评价,并根据其解决方案总结出通用的模型应用框架。④从气候变化、大气成分变化和土地利用/土地覆盖变化3个方面探讨NPP对全球变化的响应机制,以期找到NPP变化的规律与模式。最后根据NPP模型的发展对未来区域及全球尺度的NPP过程模型进行展望,认为未来模型的综合性将更高,机理性也将更强,同时与全球变化研究结合得更加紧密,且基于多个已有模型的混合模型也是未来NPP模型发展的一个重要方向。此外,本文认为对NPP模拟结果的尺度效应研究也是未来NPP研究的热点之一。  相似文献   
333.
Models that can project ecosystem dynamics under changing environmental conditions are in high demand. The application of such models, however, requires model validation together with analyses of model uncertainties, which are both often overlooked. We carried out a simplified model uncertainty and sensitivity analysis on an Ecopath with Ecosim food-web model of the Baltic Proper (BaltProWeb) and found the model sensitive to both variations in the input data of pre-identified key groups and environmental forcing. Model uncertainties grew particularly high in future climate change scenarios. For example, cod fishery recommendations that resulted in viable stocks in the original model failed after data uncertainties were introduced. In addition, addressing the trophic control dynamics produced by the food-web model proved as a useful tool for both model validation, and for studying the food-web function. These results indicate that presenting model uncertainties is necessary to alleviate ecological surprises in marine ecosystem management.  相似文献   
334.
李剑波 《四川环境》2011,30(2):83-87
二沉池的运行状况对整个污水处理系统的处理效果有重要影响。沉淀池的处理效果与沉淀池内水流特性密切相关。传统的沉淀池设计基于理想沉淀池假设和静置沉淀实验,对沉淀池内的水流特性考虑不多,设计参数选择范围宽,经验性强,不能保证沉淀池内的泥水分离和浓缩效果。计算流体力学是一种较为成熟的数值模拟技术,已广泛应用于水处理构筑物在设计条件下的内部水流特性和行为的研究,为预测沉淀池的运行状况和结构改进的效果提供了有效手段。本文对沉淀池内的水流特性和流体力学在沉淀池研究中的应用进行了描述。  相似文献   
335.
In the evaluation of potentially adverse effects oforganic chemicals such as pesticides on theenvironment the atmosphere may play an important role.After its release to the atmosphere the chemical willbe transported/dispersed in the atmosphere and finallyit will be removed either by atmospheric-chemicaldestruction or by deposition to the underlying soil orsurface water. In a risk assessment decision supportsystem both ambient concentrations and depositionfluxes must be known to evaluate the risk of directexposure (inhalation) or the risk of soil and watercontamination caused by deposition. This paperdiscusses the use of atmospheric dispersion models insuch risk assessment decision support systems.  相似文献   
336.
When the development of gap models began about three decades ago, they became a new category of forest productivity models. Compared with traditional growth and yield models, which aim at deriving empirical relationships that best fit data, gap models use semi-theoretical relationships to simulate biotic and abiotic processes in forest stands, including the effects of photosynthetic active radiation interception, site fertility, temperature and soil moisture on tree growth and seedling establishment. While growth and yield models are appropriate to predict short-term stemwood production, gap models may be used to predict the natural course of species replacement for several generations. Because of the poor availability of historical data and knowledge on species-specific allometric relationships, species replacement and death rate, it has seldom been possible to develop and evaluate the most representative algorithms to predict growth and mortality with a high degree of accuracy. For this reason, the developers of gap models focused more on developing simulation tools to improve the understanding of forest succession than predicting growth and yield accurately.In a previous study, the predictions of simulations in two southeastern Canadian mixed ecosystem types using the ZELIG gap model were compared with long-term historical data. This exercise highlighted model components that needed modifications to improve the predictive capacity of ZELIG. The updated version of the model, ZELIG-CFS, includes modifications in the modelling of crown interaction effects, survival rate and regeneration. Different algorithms representing crown interactive effects between crowns were evaluated and species-specific model components that compute individual-tree mortality probability rate were derived. The results of the simulations were compared using long-term remeasurement data obtained from sample plots located in La Mauricie National Park of Canada in Quebec. In the present study, three forest types were studied: (1) red spruce-balsam fir-yellow birch, (2) yellow birch-sugar maple-balsam fir, and (3) red spruce-balsam fir-white birch mixed ecosystems. Among the seven algorithms that represented individual crown interactions, two better predicted the changes in basal area and individual-tree growth: (1) the mean available light growing factor (ALGF), which is computed from the proportion of light intercepted at different levels of individual crowns adjusted by the species-specific shade tolerance index, and (2) the ratio of mean ALGF to crown width. The long-term predicted patterns of change in basal area were consistent with the life history of the different species.  相似文献   
337.
Nowadays, species are driven to extinction at a high rate. To reduce this rate it is important to delineate suitable habitats for these species in such a way that these areas can be suggested as conservation areas. The use of habitat suitability models (HSMs) can be of great importance for the delineation of such areas. In this study MaxEnt, a presence-only modelling technique, is used to develop HSMs for 223 nematode species of the Southern Bight of the North Sea. However, it is essential that these models are beyond discussion and they should be checked for potential errors. In this study we focused on two categories (1) errors which can be attributed to the database such as preferential sampling and spatial autocorrelation and (2) errors induced by the modelling technique such as overfitting, In order to quantify these adverse effects thousands of nulls models were created. The effect of preferential sampling (i.e. some areas where visited more frequenty than others) was investigated by comparing model outcomes based from null models sampling the actual sampling stations and null models sampling the entire mapping area (Raes and ter Steege, 2007). Overfitting is exposed by a fivefold cross-validation and the influence of spatial autocorrelation is assessed by separating test and training sets in space. Our results clearly show that all these effects are present: preferential sampling has a strong effect on the selection of non-random species models. Crossvalidation seems to have less influence on the model selection and spatial autocorrelation is also strongly present. It is clear from this study that predefined thresholds are not readily applicable to all datasets and additional tests are needed in model selection.  相似文献   
338.
A dynamic and heterogeneous species abundance model generating the lognormal species abundance distribution is fitted to time series of species data from an assemblage of stoneflies and mayflies (Plecoptera and Ephemeroptera) of an aquatic insect community collected over a period of 15 years. In each year except one, we analyze 5 parallel samples taken at the same time of the season giving information about the over-dispersion in the sampling relative to the Poisson distribution. Results are derived from a correlation analysis, where the correlation in the bivariate normal distribution of log abundance is used as measurement of similarity between communities. The analysis enables decomposition of the variance of the lognormal species abundance distribution into three components due to heterogeneity among species, stochastic dynamics driven by environmental noise, and over-dispersion in sampling, accounting for 62.9, 30.6 and 6.5% of the total variance, respectively. Corrected for sampling the heterogeneity and stochastic components accordingly account for 67.3 and 32.7% of the among species variance in log abundance. By using this method, it is possible to disentangle the effect of heterogeneity and stochastic dynamics by quantifying these components and correctly remove sampling effects on the observed species abundance distribution.  相似文献   
339.
A steady-state model of the Venice lagoon food web was constructed, based on a comprehensive set of data, which were collected in the years 2001-2005. Energy flows were estimated by means of an inverse methodology of constrained optimization based on the Minimum Norm criterion, i.e. on the minimization of both the sum of squares of the residuals and of the sum of squares of energy flows. The solution was constrained by a set inequalities, which were derived from general eco-physiological knowledge and site specific data on energy flows. The trophic network was represented by thirty-two nodes, including single-species compartments for the species of high economical or ecological relevance. Mass balance equations were weighted, in order to obtain meaningful results in presence of large differences, up to 5 orders of magnitude, among biomasses. A perturbation technique was applied, with the purpose of reducing the risk of finding solutions heavily affected by the set of constraints and of obtaining a more robust representation of the energy flows. The main patterns of energy flow are consistent with those obtained in previous attempts at modelling the Venice lagoon food web. Micro- and macro-phytobenthos account for the largest fraction of the primary production. Energy is then transferred towards higher trophic levels by means of two main pathways: the recycling of dead biomass through the detritus compartment and the direct consumption by grazers. The first pathway is the most important and accounts for approximately two/thirds of the energy transferred to the second trophic level.  相似文献   
340.
Designing environmental monitoring networks to measure extremes   总被引:1,自引:0,他引:1  
This paper discusses challenges arising in the design of networks for monitoring extreme values over the domain of a random environmental space-time field {X ij i = 1, . . . , I denoting site and j = 1, . . . denoting time (e.g. hour). The field of extremes for time span r over site domain i = 1, . . . ,I is given by \(\{Y_{i(r+1)}=\max_{j=k}^{k+n-1} X_{ij}\}\) for k = 1 + rn, r = 0, . . . ,. Such networks must not only measure extremes at the monitored sites but also enable their prediction at the non-monitored ones. Designing such a network poses special challenges that do not seem to have been generally recognized. One of these problems is the loss of spatial dependence between site responses in going from the environmental process to the field of extremes it generates. In particular we show empirically that the intersite covariance Cov(Y i(r+1),Y i′(r+1)) can generally decline toward zero as r increases, for site pairs i ≠ i′. Thus the measured extreme values may not predict the unmeasured ones very precisely. Consequently high levels of pollution exposure of a sensitive group (e.g. school children) located between monitored sites may be overlooked. This potential deficiency raises concerns about the adequacy of air pollution monitoring networks whose primary role is the detection of noncompliance with air quality standards based on extremes designed to protect human health. The need to monitor for noncompliance and thereby protect human health, points to other issues. How well do networks designed to monitor the field monitor their fields of extremes? What criterion should be used to select prospective monitoring sites when setting up or adding to a network? As the paper demonstrates by assessing an existing network, the answer to the first question is not well, at least in the case considered. To the second, the paper suggests a variety of plausible answers but shows through a simulation study, that they can lead to different optimum designs. The paper offers an approach that circumvents the dilemma posed by the answer to the second question. That approach models the field of extremes (suitably transformed) by a multivariate Gaussian-Inverse Wishart hierarchical Bayesian distribution. The adequacy of this model is empirically assessed in an application by finding the relative coverage frequency of the predictive credibility ellipsoid implied by its posterior distribution. The favorable results obtained suggest this posterior adequately describes that (transformed) field. Hence it can form the basis for designing an appropriate network. Its use is demonstrated by a hypothetical extension of an existing monitoring network. That foundation in turn enables a network to be designed of sufficient density (relative to cost) to serve its regulatory purpose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号