首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   7篇
  国内免费   49篇
安全科学   3篇
废物处理   11篇
环保管理   14篇
综合类   97篇
基础理论   46篇
污染及防治   39篇
评价与监测   8篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   21篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   19篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1984年   1篇
  1981年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
11.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   
12.
The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells’ periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes.  相似文献   
13.
This research article demonstrates biodiesel synthesis through the methanolysis of the oily contents (4.02 ± 0.27% w/w on dried basis) of Dictyota dichotoma collected from the coast of Hawksbay, Pakistan. The metal oxides (CaO, MgO, ZnO, and TiO2) used as nanocatalysts were refluxed (5% K2SO4), calcinated (850 °C) and characterized by Atomic Force Microscopy (AFM) which produced 93.2% w/w FAME (biodiesel) at relatively mild condition (5% catalyst, 65 °C, 3 h, 18:1 molar ratio) using CaO. Whereas, MgO, ZnO, and TiO2 produced 92.4%, 72.5%, and 31.8% w/w FAME, respectively at elevated condition (225 °C). Thus, CaO was considered to be the best catalyst among the others. This tri-phase reaction require continuous fast mixing and the yield depends on the reaction parameters like catalyst amount, temperature, reaction time and molar ratio (methanol: oil). The reusability of these heterogeneous catalysts simplified the purification step, reduced the waste generation and make the final product technically and economically viable.  相似文献   
14.
Yuan BL  Li XZ  Graham N 《Chemosphere》2008,72(2):197-204
The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2–UV–O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2–UV–Fe(VI) system. These findings indicate that DMP degradation in the TiO2–UV–O2 and TiO2–UV–Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2–UV–O2 reaction system and an unknown radical species (most likely an iron–oxo species) is suspected to exist in the TiO2–UV–Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2–UV–O2 and TiO2–UV–Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2–UV–O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2–UV–Fe(VI) reaction systems attack the alkyl chain of DMP.  相似文献   
15.
The personal exposure of children aged 9 – 11 years to particulate matter (PM10 and PM2.5) was carried out between January and September 1997 in the London Borough of Barnet. Personal sampling along with home, garden and classroom microenvironmental monitoring was completed for all ten children. Each child was monitored for five days during winter, spring and summer. All children completed daily time activity diaries to provide information on any potential activities that could influence their exposure to particulate matter. Each evening a household activity questionnaire was also completed by the parents. Personal Environmental Monitors were used to sample personal exposure to PM10 and PM2.5. Harvard Impactors were used for the microenvironmental sampling of both size fractions. The children's mean personal exposure concentrations for PM10 during winter, spring and summer were 72, 54 and 35 µg/m3 respectively and for PM2.5 22, 17 and 18 µg/m3 respectively. In order to determine the potential sources of particulate matter, analysis of the Teflon filters has been undertaken. The physical characteristics of the particles have been identified using Scanning Electron Microscopy. The relationships between personal exposure concentrations and the different microenvironments will be discussed.  相似文献   
16.
乌鲁木齐冬季雾天可吸入颗粒物透射电子显微镜研究   总被引:1,自引:0,他引:1  
利用透射电子显微镜(TEM)对乌鲁木齐冬季雾天采集的可吸入颗粒物(PM2.5、PM2.5~10)的形貌特征和集聚状态进行分析。将乌鲁木齐大气可吸入颗粒物分为烟尘集合体、飞灰、矿物颗粒、硫酸盐和有机颗粒等5种单颗粒类型,并讨论了其来源。TEM分析表明,PM2.5中烟尘集合体占14%,飞灰占7.4%,矿物颗粒占24%,硫酸盐占16.7%,有机颗粒占20.4%;PM2.5~10 中烟尘集合体没有观察到,飞灰占4.9%,矿物颗粒占26.8%,硫酸盐占12.2%,有机颗粒占58.5%。  相似文献   
17.
西南某市小型污水处理厂目前日处理能力为2万t.d-1,进水主要为生活污水(70%)和抗生素制药废水(30%)。由于各种原因,处理效果一直很差,尤其是CODcr、NH4-N两项指标很难达到国家排放标准要求。后经过一系列实验研究分析,发现向反应池中投加聚丙烯纤维(组合填料)对处理水质起到了很好的改善作用。  相似文献   
18.
19.
黄婷  张山  苏明雪  李宁 《中国环境科学》2022,42(7):3378-3384
采用共焦显微拉曼光谱仪探索不同热解温度(500~900)℃条件下所制备的污泥基生物炭结构变化的表征方法.结果表明,拉曼信号的荧光干扰与生物炭的理化特性有较强的相关性.随着热解温度升高,拉曼漂移系数减小,这与污泥基生物炭挥发分含量、H/C和O/C比变化趋势一致.其中,漂移系数与挥发分含量和H/C的相关性指数分别是0.97和0.94,其变化规律可用来准确评估生物炭挥发分含量和H/C的变化.同时,生物炭在拉曼光谱中的特征峰强度比D/G随着热解温度升高而增强,代表了污泥基生物炭无序化程度增加的过程.谷区域(V)与D峰强度比IV/ID随热解温度升高而减小,表明具有缺陷的稠合芳环结构的比例增加;另外,经分峰拟合后得到的ID1/IG1变化较小,而ID2/IG2呈增加趋势,证实了小分子侧链基团断裂形成的化合物部分沉积在炭表面,形成缺陷和非晶结构;IG1/IG2随着热解温度升高而减小,表明了炭基材料键角有序与无序比随着热解温度的升高而降低.因此,拉曼光谱可用于表征污泥基生物炭的微观结构变化,反映其结构演变规律.  相似文献   
20.
The purpose of this work was to study the mechanisms involved in free radical activation of thermal mechanical pulp (TMP) fibers with the ultimate goal of developing methods for bonding wood fiber without the use of traditional adhesives. The generation of hydroxyl radicals in a mediated Fenton system was studied using electron spin resonance (ESR) spin-trapping techniques and indirectly through chemiluminescence measurement. The activation of TMP fibers was also evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. However, it was also shown that excessive and prolonged free radical treatment may cause the destruction of fiber phenoxy radicals. In conclusion, this study demonstrates the potential for application, but also the complexity of free radical chemistry in biological materials, especially with regard to the chelation of transition metals and the interaction between free radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号