首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   107篇
  国内免费   294篇
安全科学   22篇
废物处理   41篇
环保管理   180篇
综合类   661篇
基础理论   95篇
环境理论   3篇
污染及防治   84篇
评价与监测   60篇
社会与环境   159篇
  2024年   12篇
  2023年   60篇
  2022年   54篇
  2021年   67篇
  2020年   55篇
  2019年   49篇
  2018年   56篇
  2017年   63篇
  2016年   81篇
  2015年   86篇
  2014年   62篇
  2013年   103篇
  2012年   74篇
  2011年   113篇
  2010年   32篇
  2009年   39篇
  2008年   35篇
  2007年   33篇
  2006年   30篇
  2005年   24篇
  2004年   25篇
  2003年   21篇
  2002年   26篇
  2001年   26篇
  2000年   24篇
  1999年   12篇
  1998年   6篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有1305条查询结果,搜索用时 15 毫秒
991.
Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995–2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3 PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.  相似文献   
992.
The fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from <1 to 55 g kg−1 of dry wood depending on the combination of appliance type, wood species and moisture content, filter medium, and dilution system. For Teflon filter sampling of stove emissions in the wind tunnel, the total mass EFs varied from 2 to 8 g kg−1 of dry fuel depending on wood type whereas the equivalent fireplace emissions burning wet oak averaged 11 g kg−1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).  相似文献   
993.
Simple, inexpensive and accurate methods for assessing the spatial distribution of traffic emissions are badly needed for the environmental management in South American cities. In this study, various spatial disaggregation methods of traffic emissions of carbon monoxide are presented and evaluated for a large city (Santiago de Chile). Previous methods have used a simplified road network as a proxy for deriving spatial patterns of emissions. However, these approaches resulted in underestimation of emissions in urban centers, industrial zones and highly loaded roads, as well as overestimation in residential zones. Here we modify these methods by adding data correlated with the emissions (e.g. traffic counts, vehicles mean speed, road capacity) solving partially or completely the indicated problems. After an accuracy-simplicity analysis two methodologies stand out over the others: using traffic count classification and using a land use map, both combined with a simplified road network. Both are top–down approaches that correlate well (0.9) with the reference emissions and capture emission peaks (within 30% relative error). Hence the proposed changes allow an improved balance between accuracy and costs (monetary, availability of data and time to obtain data).  相似文献   
994.
Slurry management is a central topic in the agronomic and environmental analysis of intensive livestock production systems. The objective of this study is to compare the environmental performance of two scenarios of collective slurry management for the disposal of excess nitrogen from animal manure. The scenarios are the transfer of slurry and its injection to crop land, and the treatment of slurry in a collective biological treatment station. The study is based on a real case in the West of France, where a group of farmers is developing a collective plan for the disposal of almost 7000 m(3) of excess pig slurry. The evaluation is carried out by Life Cycle Assessment, where emissions and resource consumption are quantified and aggregated into four environmental impact categories: eutrophication, acidification, climate change, and non-renewable energy use. Ammonia emitted is the most important contributor to acidification and eutrophication, while methane contributes most to climate change. Both ammonia and methane are mostly emitted during the storage of slurry and, in the case of the treatment scenario, also during composting the solid fraction of the slurry. The two management strategies are similar with respect to climate change, whereas eutrophication and acidification are twice as large for treatment relative to transfer. Electricity needed for the treatment process is the main contributor to non-renewable energy use for the treatment scenario, while the transfer scenario represents a net energy saving, as energy saved by the reduction of mineral fertiliser use more than compensates for the energy needed for transport and injection of slurry. The overall environmental performance of transfer is better than that of treatment, as it involves less acidification, eutrophication and non-renewable energy use. The method employed and the results obtained in this study can provide elements for a transparent discussion of the advantages and disadvantages of contrasting excess slurry management scenarios as well as the identification of the main aspects determining their environmental performance.  相似文献   
995.
Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NOx) representative of urban conditions, in solardome chambers. Annual mean NOx concentrations ranged from 77 nl l−l to 98 nl l−1, with NO:NO2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.  相似文献   
996.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   
997.
近年来,济南市机动车保有量增长较快,本文主要研究济南市机动车的保有现状、发展趋势和机动车污染排放分布状况,在机动车污染控制方面提出了应对措施,包括:发展清洁汽车、优先发展大型公交、严格控制机动车污染排放、严格执行机动车报废制度、实施机动车环保分类标志管理等。  相似文献   
998.
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   
999.
GOAL, SCOPE AND BACKGROUND: [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. METHODS: A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30-40 cm.The CH4 efflux was computed from CO2 efflux and from the ratio CH4/CO2 in the soil gas. Soil gas samples were collected at a depth of 30-40 cm using a metallic probe and 20 cc hypodermic syringes, and later stored in evacuated 10 cc vacutainers for laboratory analysis of bulk composition. The gas sample was introduced in a vacutainer filled with deionized water and displacing the water until the vacutainer was filled with the gas sample in order to avoid air contamination from entering. The surface landfill temperature of the landfill was measured at a depth of 40 cm using a digital thermometer type OMEGA 871A. Landfill gases, CO2 and CH4, were analyzed within 24 hours using a double channel VARIAN micro-GC QUAD CP-2002P, with a 10 meter PORAPLOT-Q column, a TCD detector, and He as a carrier gas. The analysis temperature was 40 degrees C and the injection time was 10 msec. Surface landfill CO2 efflux measurements were performed using a portable NDIR spectrophotometer Licor-800 according to the accumulation chamber method (Chiodini et al. 1996). The data treatment, aimed at drawing the flux map and computing the total gas output, was based on the application of stochastic simulation algorithms provided by the GSLIB program (Deutsch and Journel 1998). RESULTS: Diffuse CH4 and CO2 efflux values range from negligible values up to 7,148 and 30,573 g m(-2) d(-1), respectively. The spatial distribution of the concentration and efflux of CO2, CH4 and soil temperature, show three areas of maximum activity in the landfill, suggesting a non-uniform pattern of diffuse degassing. This correlation between high emissions and concentration of CO2, CH4 and soil temperatures suggests that the areas of higher microbial activity and exothermic reactions are releasing CO2 and CH4 to the atmosphere from the landfill. Taking into consideration the spatial distribution of the CO2 and CH4 efflux values as well as the extension of the landfill, the Non-controlled emission of CO2 and CH4 to the atmosphere by the Lazareto's landfill are of 167 +/- 13.3 and 16 +/- 2.5 t d(-1), respectively. DISCUSSION: The patterns of gas flow within the landfill seem to be affected by boundary materials at the sides. The basalt layers have a low permeability and the gas flow in these areas is extensive. In this area, where a basalt layer does not exist, the flow gas diffuses toward the sea and the flux emissions at the landfill surface are lower. This behavior reflects the possible dissolution of gases into water and the deflection of gases towards the surface at the basalt boundary. The proximity to the sea, the installation of a palm tree garden and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. The introduction of sea water into the landfill and the type of boundary could be defining the superficial gas discharges. CONCLUSIONS: Results from this study indicate that the spatial distribution of Non-controlled emission of CO2 and CH4 at the Lazareto's landfill shows a non-uniform pattern of diffuse degassing. The northeast, central and northwest areas of the Lazareto's landfill are the three areas of high emissions and concentration of CO2 and CH4, and high temperatures. The correlation between high emissions and the concentration of CO2, CH4, and the high temperatures suggest that the areas of higher microbial activity and exothermic reactions are releasing more CO2 and CH4 to the atmosphere from the landfill. A high concentration of CO2 is probably due to the presence of methanotrophic bacteria in the soil atmosphere of the landfill. Patterns of gas flow within the landfill seem to be affected by boundary materials (basalt layers) of low permeability, and side boundaries of the flux emissions at the surface are higher. At the sides of seawater and sediment boundaries, flux emissions at the landfill surface are lower. This behavior reflects a possible dissolution of gases into the water and the deflection of gases towards the surface at the basalt boundary. With this study, we can compare the data obtained in this landfill with other landfills and observe the different levels of emission. The proximity to the sea and the installation of the palm tree garden palms and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. Many landfills worldwide located in similar settings could experience similar gas production processes. RECOMMENDATIONS AND PERSPECTIVES: The need for investigating and monitoring sea water and sediment quality in these landfills is advisable. Concentrations and fluxes of contaminants and their impact in the area should be assessed. With this study we can compare the data obtained in these landfills with other landfills and observe the different levels of emission.  相似文献   
1000.
自2013年以来,珠三角地区SO2、NOx及颗粒物等污染物浓度逐渐下降,但臭氧污染日渐凸显.作为二次污染物,臭氧污染演变受到排放与气象条件共同影响.而评估本地前体物人为排放变化、外部传输和气象变化对臭氧污染演变的影响,并识别臭氧污染长期演变趋势的重要驱动因素,是开展区域臭氧污染防控的关键基础.因此,本文采用WRF-SMOKE-CMAQ模拟平台,以2006—2017年广东省和中国大气污染物排放趋势清单为输入清单,以2014年的气象数据为基准年气象场,通过设置不同案例,结合观测数据,定量评估本地、外部排放变化和气象变化对珠三角秋季O3污染长期演变趋势的影响.结果表明:在2006—2017年期间,整个珠三角9—10月臭氧日最大8 h(MDA8)浓度上升主要由人为排放变化主导,平均每年贡献0.7μg·m-3,而气象条件总体上抑制了2006—2017年期间珠三角秋季臭氧MDA8浓度的增长,使得秋季臭氧MDA8浓度上升速率下降为0.2μg·m-3·a-1;人为排放变化...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号