首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   23篇
安全科学   1篇
综合类   24篇
基础理论   4篇
评价与监测   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2010年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
11.
With the development of nanotechnology,gold(Au) and graphene oxide(GO) nanoparticles have been widely used in various fields,resulting in an increased release of these particles into the environment.The released nanoparticles may eventually accumulate in sediment,causing possible ecotoxicological effects to benthic invertebrates.However,the impact of Au-NPs and GO-NPs on the cosmopolitan oligochaete,Tubifex tubifex,in sediment exposure is not known.Mortality,behavioral impact(GO-NP and Au-NP) and uptake(only Au-NP) of sediment-associated Au-NPs(4.9±0.14 nm) and GO-NPs(116±0.05 nm) to T.tubifex were assessed in a number of 5-day exposure experiments.The results showed that the applied Au-NP concentrations(10 and 60 μg Au/g dry weight sediment) had no adverse effect on T.tubifex survival,while Au bioaccumulation increased with exposure concentration.In the case of GO-NPs,no mortality of T.tubifex was observed at a concentration range of 20 and180 μg GO/g dry weight sediment,whereas burrowing activity was significantly reduced at 20 and 180 μg GO/g dry weight sediment.Our results suggest that Au-NPs at 60 μg Au/g or GO-NPs at 20 and 180 μg GO/g were detected by T.tubifex as toxicants during short-term exposures.  相似文献   
12.
GO or RGO promotes bromate formation during ozonation of bromide-containing water. CeO2/RGO significantly inhibits bromate formation compared to RGO during ozonation. CeO2/RGO shows an enhancement on DEET degradation efficiency during ozonation. Ozone (O3) is widely used in drinking water disinfection and wastewater treatment. However, when applied to bromide-containing water, ozone induces the formation of bromate, which is carcinogenic. Our previous study found that graphene oxide (GO) can enhance the degradation efficiency of micropollutants during ozonation. However, in this study, GO was found to promote bromate formation during ozonation of bromide-containing waters, with bromate yields from the O3/GO process more than twice those obtained using ozone alone. The promoted bromate formation was attributed to increased hydroxyl radical production, as confirmed by the significant reduction (almost 75%) in bromate yield after adding t-butanol (TBA). Cerium oxide (less than 5 mg/L) supported on reduced GO (xCeO2/RGO) significantly inhibited bromate formation during ozonation compared with reduced GO alone, and the optimal Ce atomic percentage (x) was determined to be 0.36%, achieving an inhibition rate of approximately 73%. Fourier transform infrared (FT-IR) spectra indicated the transformation of GO into RGO after hydrothermal treatment, and transmission electron microscope (TEM) results showed that CeO2 nanoparticles were well dispersed on the RGO surface. The X-ray photoelectron spectroscopy (XPS) spectra results demonstrated that the Ce3+/Ce4+ ratio in xCeO2/RGO was almost 3‒4 times higher than that in pure CeO2, which might be attributed to the charge transfer effect from GO to CeO2. Furthermore, Ce3+ on the xCeO2/RGO surface could quench Br⋅ and BrO⋅ to further inhibit bromate formation. Meanwhile, 0.36CeO2/RGO could also enhance the degradation efficiency of N,N-diethyl-m-toluamide (DEET) in synthetic and reclaimed water during ozonation.  相似文献   
13.
Homogeneous and vertically aligned silicon nanowires (SiNWs) were successfully fabricated using silver assisted chemical etching technique. The prepared samples were characterized using scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Photocatalytic degradation properties of graphene oxide (GO) modified SiNWs have been investigated. We found that the SiNWs morphology depends on etching time and etchant composition. The SiNWs length could be tuned from 1 to 42 µm, respectively when varying the etching time from 5 to 30 min. The etchant concentration was found to accelerate the etching process; doubling the concentrations increases the length of the SiNWs by a factor of two for fixed etching time. Changes in bundle morphology were also studied as function of etching parameters. The SiNWs diameter was found to be independent of etching time or etchant composition while the size of the SiNWs bundle increases with increasing etching time and etchant concentration. The addition of GO was found to improve significantly the photocatalytic activity of SiNWs. A strong correlation between etching parameters and photocatalysis efficiency has been observed, mainly for SiNWs prepared at optimum etching time and etchant concentrations of 10 min and 4:1:8. A degradation of 92% was obtained which further improved to 96% by addition of hydrogen peroxide. Only degradation efficiency of 16% and 31% has been observed for bare Si and GO/bare Si samples respectively. The obtained results demonstrate that the developed SiNWs/GO composite exhibits excellent photocatalytic performance and could be used as potential platform for the degradation of organic pollutants.  相似文献   
14.
Sulfide-modified nanoscale zero-valent iron (S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles (NPs) easily agglomerate and have poor contact with organic contaminants. Herein, we propose a new S-nZVI/graphene aerogel (S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene (TCE) from water. Three-dimensional porous graphene aerogel (GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs. The TCE removal rates of FeS, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2?hr, respectively. Furthermore, TCE was completely removed within 50?min by S-nZVI/GA. The TCE removal rate increased with increasing pH and temperature, and TCE removal followed the pseudo-first-order kinetic model. The results demonstrate the great potential of S-nZVI/GA composite as a low-cost, easily separated and superior monolithic adsorbent for removal of organic pollutants.  相似文献   
15.
Catalytic ozonation is progressively becoming an attractive technique for quick water purification but efficient and stable catalysts remains elusive. Here we solvothermally synthesized highly-dispersed Co3O4 nanocrystals over microscale nitrogen-doping graphene (NG) nanosheets and tested it as a synthetic catalyst in the ozonation of phenol in aqueous solutions. Transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectra and X-ray photoelectron spectroscopy were used to determine its morphology, crystallinity, elemental composition and molecular bonds, respectively. The comparative experiments confirmed the highest catalytic activity and oxidation degree (AOSC) of Co3O4/NG among four nanocomposites (G, NG, Co3O4/G, and Co3O4/NG). Co3O4/NG also has exhibited the highest degradation rate: complete conversion of a near-saturated concentration of phenol (941.1 mg/L) was achieved within 30 min under ambient conditions with only a small dosage of Co3O4/NG (50 mg/L) and ozone (4 mg/L, flow rate: 0.5 L/min). It also resulted in 34.6% chemical oxygen demand (CODCr) and 24.2% total organic carbon (TOC) reduction. In this work, graphene nanosheets not only functioned as a support for Co3O4 nanocrystals but also functioned as a co-catalyst for the enhancement in phenol removal efficiency. The surface nitridation and Co3O4 modification treatment further improved the removal rate of the phenol pollutants and brought in the higher oxidation degree. Our finding may open new perspectives for pursuing exceptional activity for catalytic ozonation reaction.  相似文献   
16.
A series of graphene–TiO2photocatalysts was synthesized by doping TiO2 with graphene oxide via hydrothermal treatment. The photocatalytic capability of the catalysts under ultraviolet irradiation was evaluated in terms of sodium pentachlorophenol(PCP-Na) decomposition and mineralization. The structural and physicochemical properties of these nanocomposites were characterized by X-ray diffraction, N2adsorption–desorption, transmission electron microscopy, scanning electron microscopy, Ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectra, and Fourier-transform infrared spectroscopy. The graphene–TiO2nanocomposites exhibited higher photocatalytic efficiency than commercial P25 for the degradation of PCP-Na, and 63.4% to 82.9% of the total organic carbon was fully mineralized. The improved photocatalytic activity may be attributed to the accelerated interfacial electron-transfer process and the significantly prolonged lifetime of electron-hole pairs imparted by graphene sheets in the nanocomposites. However,excessive graphene and the inhomogeneous aggregation of TiO2 nanoparticles may decrease photodegradation efficiency.  相似文献   
17.
A facile fabrication and processing of cerium oxide-graphene oxide(CeO_2-GO) hybrid nanocomposites without the use of any surfactant or any organic solvents using chemical method and treatment with microwave irradiation technique are reported. In-situ hexagonal nano cerium oxide particles embedded on the layered surface of GO sheets were investigated for the photodegradation of dyes, removal of chromium Cr(VI) ions and against antibacterial studies. The results imply that hybrid nanocomposites shows enhanced 5-folds of photocatalytic activities in UV(ultraviolet) light irradiation and exhibited rapid efficiency in the elimination of chromium ion better than the pure GO and CeO_2, which are inhibited by competent photosensitive electron inoculation and controlling the electron–hole recombination. The synergetic effect of CeO_2-GO composites played a vital role in showing better results against model bacterium than GO and CeO_2 are due to higher physical interaction endorsed to the stress of membranes acute by piercing edges,large surface area, and higher adsorptive conditions of graphene oxide sheets tailored with ceria particles. The amount of charge transferred at the interface increases with the concentration of O atoms, demonstrating the interaction between CeO_2 and GO is much stronger than CeO_2 and GO are due to the decrease of the average equilibrium distance between the interfaces. The CeO_2-GO interface staggered band alignments existing between the CeO_2 surfaces and GO which shows an excellent synergism. The structure and morphology of composites were tested by X-ray diffraction(XRD), Fourier transform infrared(FTIR), Raman, X-ray photoelectron spectroscopy(XPS), and high-resolution transmission electron microscope(HR-TEM).  相似文献   
18.
In this study, transport behaviors of graphene oxide (GO) in saturated uncoated (i.e., clean sand) and goethite-coated sand porous media were examined as a function of the phosphate. We found that phosphate enhanced the transport of GO over a wide range of solution chemistry (i.e., pH 5.0–9.0 and the presence of 10 mmol/L Na+ or 0.5 mmol/L Ca2+). The results were mainly ascribed to the increase of electrostatic repulsion between nanoparticles and porous media. Meanwhile, deposition site competition induced by the retained phosphate was another important mechanism leading to promote GO transport. Interestingly, when the phosphate concentration increased from 0.1 to 1.0 mmol/L, the transport-enhancement effect of phosphate in goethite-coated sand was to a much larger extent than that in clean sand. The observations were primarily related to the difference in the total mass of retained phosphate between the iron oxide-coated sand and clean sand columns, which resulted in different degrees of the electrostatic repulsion and competitive effect of phosphate. When the background solution contained 0.5 mmol/L Ca2+, phosphate could be bind to sand/ goethite-coated sand surface by cation bridging; and consequently, promoted competition between phosphate and nanoparticles for deposition sites, which was an important mechanism for the enhanced effect of phosphate. Moreover, the DLVO theory was applicable to describe GO transport behaviors in porous media in the absence or presence of phosphate. Taken together, these findings highlight the important status and role of phosphate on the transport and fate of colloidal graphene oxide in the subsurface environment.  相似文献   
19.
In this study, Pb(II) was used as a target heavy metal pollutant, and the metabolism of Shewanella putrefaciens (S. putrefaciens) was applied to achieve reducing conditions to study the effect of microbial reduction on lead that was preadsorbed on graphene oxide (GO) surfaces. The results showed that GO was transformed to its reduced form (r-GO) by bacteria, and this process induced the release of Pb(II) adsorbed on the GO surfaces. After 72 hr of exposure in an S. putrefaciens system, 5.76% of the total adsorbed Pb(II) was stably dispersed in solution in the form of a Pb(II)-extracellular polymer substance (EPS) complex, while another portion of Pb(II) released from GO-Pb(II) was observed as lead phosphate hydroxide (Pb10(PO4)6(OH)2) precipitates or adsorbed species on the surface of the cell. Additionally, increasing pH induced the stripping of oxidative debris (OD) and elevated the content of dispersible Pb(II) in aqueous solution under the conditions of S. putrefaciens metabolism. These research results provide valuable information regarding the migration of heavy metals adsorbed on GO under reducing conditions due to microbial metabolism.  相似文献   
20.
In this study,graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe_3O_4@SiO_2@GO-PEA that can be applied to the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons(PAHs) from water samples.The resulting microspheres(Fe_3O_4@SiO_2@GO-PEA) were characterized by Fourier transform-infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),CHNS elemental analysis,and vibrating sample magnetometry(VSM) techniques.The adsorbent possesses the magnetic properties of Fe_3O_4 nanoparticles that allow them easily to be separated by an external magnetic field.They also have the high specific surface area of graphene oxide which improves adsorption capacity.Desorption conditions,extraction time,amount of adsorbent,salt concentration,and pH were investigated and optimized.Following desorption,the PAHs were quantified by gas chromatography with flame ionization detection(GC-FID).The limits of detection(at an S/N ratio of 3) were achieved from 0.005 to0.1 μg/L with regression coefficients(R~2) higher than 0.9954.The relative standard deviations(RSDs) were below 5.8%(intraday) and 6.2%(inter-day),respectively.The method was successfully applied to the analysis of PAHs in environmental water samples where it showed recoveries in the range between 71.7%and 106.7%(with RSDs of 1.6%to 8.4%,for n = 3).The results indicated that the Fe_3O_4@SiO_2@GO-PEA microspheres had a great promise to extraction of PAHs from different water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号