首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   2篇
  国内免费   18篇
安全科学   9篇
废物处理   2篇
环保管理   106篇
综合类   94篇
基础理论   43篇
污染及防治   165篇
评价与监测   62篇
社会与环境   18篇
灾害及防治   4篇
  2024年   1篇
  2023年   8篇
  2022年   9篇
  2021年   7篇
  2020年   14篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   14篇
  2015年   17篇
  2014年   11篇
  2013年   25篇
  2012年   10篇
  2011年   36篇
  2010年   18篇
  2009年   42篇
  2008年   55篇
  2007年   36篇
  2006年   21篇
  2005年   14篇
  2004年   15篇
  2003年   19篇
  2002年   13篇
  2001年   18篇
  2000年   18篇
  1999年   6篇
  1998年   13篇
  1997年   11篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有503条查询结果,搜索用时 46 毫秒
71.
2 were sampled in order to verify the impact of these problems on groundwater. All samples were analyzed for major ions, and about 30 of them for fecal coliforms and heavy metals. Nineteen samples were selected for pesticide analyses. The average nitrate content was 80 mg/liter, eight times the regional background value. Fecal coliforms were detected in 60% of the analyzed samples. Zinc content and a high Cl/HCO3 ratio were observed in the surroundings of the solid waste disposal area. Moreover, lindane and heptachlor pesticides were detected in ten samples.  相似文献   
72.
The methods presented in this work provide a potential tool for characterizing contaminant source zones in terms of mass flux. The problem was conceptualized by considering contaminant transport through a vertical "flux plane" located between a source zone and a downgradient region where contaminant concentrations were measured. The goal was to develop a robust method capable of providing a statement of the magnitude and uncertainty associated with estimated contaminant mass flux values. In order to estimate the magnitude and transverse spatial distribution of mass flux through a plane, the problem was considered in an optimization framework. Two numerical optimization techniques were applied, simulated annealing (SA) and minimum relative entropy (MRE). The capabilities of the flux plane model and the numerical solution techniques were evaluated using data from a numerically generated test problem and a nonreactive tracer experiment performed in a three-dimensional aquifer model. Results demonstrate that SA is more robust and converges more quickly than MRE. However, SA is not capable of providing an estimate of the uncertainty associated with the simulated flux values. In contrast, MRE is not as robust as SA, but once in the neighborhood of the optimal solution, it is quite effective as a tool for inferring mass flux probability density functions, expected flux values, and confidence limits. A hybrid (SA-MRE) solution technique was developed in order to take advantage of the robust solution capabilities of SA and the uncertainty estimation capabilities of MRE. The coupled technique provided probability density functions and confidence intervals that would not have been available from an independent SA algorithm and they were obtained more efficiently than if provided by an independent MRE algorithm.  相似文献   
73.
Controlled release, blind test of DNAPL remediation by ethanol flushing   总被引:1,自引:0,他引:1  
A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.  相似文献   
74.
This paper presents a model for the geometry of nonaqueous phase liquid (NAPL) pools and mounds in homogeneous soils and soils with discrete textural interfaces. It is shown that the concepts of capillary pressure-saturation curve hysteresis and entry pressures are integral to the complete conceptualization of pool and mound geometry. Unless hysteresis is included in the analysis, light NAPL (LNAPL) in homogeneous soils cannot exist in pools at all, and dense NAPL (DNAPL) will not mound on horizontal textural interfaces unless lateral confining boundaries are present. The proposed model also implies that remobilization of DNAPL pools will occur at lower hydraulic gradients than those predicted with previous models. Comparing predicted and experimental DNAPL and LNAPL pool thicknesses and the location of an LNAPL lens with respect to the top of the capillary fringe validate the model.  相似文献   
75.
Evolution of trimethylbenzoic acids in the KC-135 aquifer at the former Wurtsmith Air Force Base (WAFB), Oscoda, MI was examined to determine the functionality of trimethylbenzoic acids as key metabolite signatures in the biogeochemical evolution of an aquifer contaminated with JP-4 fuel hydrocarbons. Changes in the composition of trimethylbenzoic acids and the distribution and concentration profiles exhibited by 2,4,6- and 2,3,5-trimethylbenzoic acids temporally and between multilevel wells reflect processes indicative of an actively evolving contaminant plume. The concentration levels of trimethylbenzoic acids were 3-10 orders higher than their tetramethylbenzene precursors, a condition attributed to slow metabolite turnover under sulfidogenic conditions. The observed degradation of tetramethylbenzenes into trimethylbenzoic acids obviates the use of these alkylbenzenes as non-labile tracers for other degradable aromatic hydrocarbons, but provides rare field evidence on the range of high molecular weight alkylbenzenes and isomeric assemblages amenable to anaerobic degradation in situ. The coupling of actual tetramethylbenzene loss with trimethylbenzoic acid production and the general decline in the concentrations of these compounds demonstrate the role of microbially mediated processes in the natural attenuation of hydrocarbons and may be a key indicator in the overall rate of hydrocarbon degradation and the biogeochemical evolution of the KC-135 aquifer.  相似文献   
76.
We consider the results of a recent paper in this journal [Zeru, A. and Schäfer, G., 2005. Analysis of groundwater contamination using concentration–time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume. Journal of Contaminant Hydrology 81 (2005) 106–124], which addresses the field-scale characterisation of contaminant plumes in groundwater. There, it is concluded that contaminant concentration gradients can bias Integral Pumping Test (IPT) interpretations considerably, in particular if IPTs are conducted in advective fronts of contaminant plumes. We discuss implications of this setting and also argue that the longitudinal and transverse dispersivities used in the examples of Zeru and Schäfer (2005) of up to 30 m and 3 m, respectively, are generally very high for the here relevant capture zone scale (< 20 m). However, regardless of both longitudinal and transverse concentration gradients, we further show through a counter-example that IPT results are unbiased as long as the concentration attenuation along the flow direction is linear over the capture zone extent.  相似文献   
77.
Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.  相似文献   
78.
In-situ bio-remediation is a viable cleanup alternative for aquifers contaminated by hydrocarbons such as BTEX. Transport models of varying complexity and capabilities are used to quantify their degradation. A model that has gained wide acceptance in applications is BIOPLUME II, which assumes that oxygen-limited biodegradation takes place as an instantaneous reaction. In this work we have employed theoretical analysis, using non-dimensional variables, and numerical modelling to establish a quantitative criterion demarcating the range of validity of the instantaneous reaction approximation against biodegradation kinetics. Oxygen was the limiting species and sorption was ignored. This criterion relates (o), the Dahmk?hler number at oxygen depletion, to O(o)*, the ratio of initial to input oxygen concentration, (o) > or = 0.7(O(o)*)(2) + 0.1O(o)* + 1.8. The derived (o) reflects the intrinsic characteristics of the physical transport and of the biochemical reaction, including the effect of biomass density. Relative availability of oxygen and hydrocarbons exerts a small influence on results. Theory, verified and refined via numerical simulations, showed that significant deviations of instantaneous reactions from kinetics are to be expected in the space-time region s相似文献   
79.
Nitrate in groundwater: an isotopic multi-tracer approach   总被引:12,自引:0,他引:12  
In spite of increasing efforts to reduce nitrogen inputs into groundwater from intensive agriculture, nitrate (NO3) remains one of the major pollutants of drinking-water resources worldwide. Determining the source(s) of NO3 contamination in groundwater is an important first step for improving groundwater quality by emission control, and it is with this aim that we investigated the viability of an isotopic multi-tracer approach (delta15N, delta11B, 87Sr/86Sr), in addition to conventional hydrogeologic analysis, in two small catchments of the Arguenon watershed (Brittany, France). The main anthropogenic sources (fertilizer, sewage effluent, and hog, cattle and poultry manure) were first characterized by their specific B, N and Sr isotope signatures, and compared to those observed in the ground- and surface waters. Chemical and isotopic evidence shows that both denitrification and mixing within the watershed have the effect of buffering NO3 contamination in the groundwater. Coupled delta11B, delta15N and 87Sr/86Sr results indicate that a large part of the NO3 contamination in the Arguenon watershed originates from the spreading of animal manure, with hog manure being a major contributor. Point sources, such as sewage effluents, contribute to the NO3 budget of the two watersheds.  相似文献   
80.
The use of coal fly ash (CFA), municipal solid waste incinerator bottom ash (MSWIBA) and flue gas desulfurization residue (FGDR) in road construction has become very common owing to its economical advantages. However, these residues may contain toxic constituents that pose an environmental risk if they leach out and flow through the soil, surface water and groundwater. Therefore, it is necessary to assess the ecotoxicity and groundwater impact of these residues before decisions can be made regarding their utilization for road construction. In this study, the physico-chemical characteristics, leaching and phytotoxicity of these residues were investigated. Specifically, multivariate analyses were used to evaluate the contributions of the leaching constituents of the CFA, MSWIBA and FGDR leachates to the germination index of wheat seeds. B, Ba, Cr, Cu, Fe and Pb were found to be more toxic to the wheat seeds than the other heavy metals. Furthermore, the leached concentrations of the constituents from the CFA, MSWIBA and FGDR were below the regulatory threshold limits of the Chinese identification standard for hazardous wastes. Analyses conducted using a numerical groundwater model (WiscLEACH) indicated that the predicted field concentrations of metals from the CFA, MSWIBA and FGDR increased with time up to about 30 years at the point of compliance, then decreased with time and distance. Overall, this study demonstrated that the risks resulting from MSWIBA, CFA and FGDR leaching could be assessed before its utilization for road construction, providing crucial information for the adoption of these alternative materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号