首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4601篇
  免费   627篇
  国内免费   2649篇
安全科学   348篇
废物处理   234篇
环保管理   405篇
综合类   4391篇
基础理论   1042篇
环境理论   1篇
污染及防治   1078篇
评价与监测   252篇
社会与环境   104篇
灾害及防治   22篇
  2024年   9篇
  2023年   93篇
  2022年   174篇
  2021年   245篇
  2020年   189篇
  2019年   269篇
  2018年   255篇
  2017年   239篇
  2016年   294篇
  2015年   334篇
  2014年   385篇
  2013年   447篇
  2012年   541篇
  2011年   537篇
  2010年   419篇
  2009年   507篇
  2008年   334篇
  2007年   364篇
  2006年   407篇
  2005年   293篇
  2004年   219篇
  2003年   235篇
  2002年   190篇
  2001年   167篇
  2000年   141篇
  1999年   118篇
  1998年   87篇
  1997年   77篇
  1996年   72篇
  1995年   62篇
  1994年   40篇
  1993年   37篇
  1992年   32篇
  1991年   21篇
  1990年   12篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有7877条查询结果,搜索用时 375 毫秒
481.
Xu Z  Deng S  Yang Y  Zhang T  Cao Q  Huang J  Yu G 《Chemosphere》2012,87(9):1032-1038
Pentachlorobenzene (PeCB) in simulated flue gas was destructed by a commercial V2O5-WO3/TiO2 catalyst in this study. The effects of reaction temperature, oxygen concentration, space velocity and some co-existing pollutants on PeCB conversion were investigated. Furthermore, a possible mechanism for the oxidation of PeCB over the vanadium oxide on the catalysts was proposed. Results show that the increase of gas hourly space velocity (GHSV) and the decrease of operating temperature both resulted in the decrease of PeCB removal over the catalyst, while the effect of the oxygen content in the range of 5-20% (v/v) on PeCB conversion was negligible. PeCB decomposition could be obviously affected by the denitration reactions under the conditions because of the positive effect of NO but negative effect of NH3. The introduction of SO2 caused the catalyst poisoning, probably due to the sulfur-containing species formed and deposited on the catalyst surface. The PeCB molecules were first adsorbed on the catalyst surface, and then oxidized into the non-aromatic acyclic intermediates, low chlorinated aromatics and maleic anhydride.  相似文献   
482.
Dissolved organic matter (DOM) is a ubiquitous constituent of natural waters and is comprised of a variety of chemically heterogeneous molecular structures and functional groups. DOM is often considered to be a major ligand for metals in most natural waters and its reactivity is thought to be strongly dependent on its chemical composition and structure. In this study, a combination of UV/visible, emission excitation matrix fluorescence (EEM) and 1H NMR spectroscopies were used to characterize DOM from the Athabasca River (Alberta, Canada). The chemical characterization of river DOM showed that the most upstream samples located in agricultural areas were blue-shifted and less aromatic and contained more hydrogens connected with oxygen functional groups than those in the wetland dominated area in the Athabasca oil sand deposit region. The presence of paramagnetic ions (Fe and Al) was not found to significantly affect the structural composition of DOM as revealed by 1H NMR. Such change in the quality of DOM may have a profound impact on metal binding in the Athabasca River watershed.  相似文献   
483.
The role of iron in surface-mediated formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from 2-chlorophenol (2-MCP) was investigated over the temperature range of 200-550 °C under oxidative conditions. In order to compare and contrast with previous work on copper and ferric oxide-mediated pyrolysis of 2-MCP, identical reaction conditions were maintained (50 ppm 2-MCP, model fly-ash particles containing 5% Fe2O3 on silica). Observed products included dibenzo-p-dioxin (DD), 1-monochlorodibenzo-p-dioxin (1-MCDD), dibenzofuran (DF), 4,6-dichlorodibenzofuran (4,6-DCDF), 2,4- and 2,6-dichlorophenol, 2,4,6-trichlorophenol, quinone, catechol, chloro-o-quinone, chlorocatechol and polychlorinated benzenes. Yields of DD and 1-MCDD were 2 and 5 times higher than under pyolysis conditions, respectively. Although 4,6-DCDF was the major PCDD/F product formed with a yield that was 2.5× greater than under pyrolysis, the yield of non-chlorinated DF, which was the dominant PCDD/F product under pyrolysis, decreased by a factor of 3. Furthermore, the ∼2× higher yield of PCDDs under oxidative conditions resulted in a PCDD to PCDF ratio of 0.75 compared to a relatively low ratio of 0.39 previously observed under pyrolytic conditions.  相似文献   
484.
For several decades, perfluorooctane sulfonate (PFOS) has widely been used as a fluorinated surfactant in aqueous film forming foams used as hydrocarbon fuel fire extinguishers. Due to concerns regarding its environmental persistence and toxicological effects, PFOS has recently been replaced by novel fluorinated surfactants such as Forafac®1157, developed by the DuPont company. The major component of Forafac®1157 is a 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and a link between the trade name and the exact chemical structure is presented here to the scientific community for the first time. In the present work, the structure of the 6:2 FTAB was elucidated by 1H, 13C and 19F nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Moreover, its major metabolites from blue mussel (Mytilus edulis) and turbot (Scophthalmus maximus) and its photolytic transformation products were identified. Contrary to what has earlier been observed for PFOS, the 6:2 FTAB was extensively metabolized by blue mussel and turbot exposed to Forafac®1157. The major metabolite was a deacetylated betaine species, from which mono- and di-demethylated metabolites also were formed. Another abundant metabolite was the 6:2 fluorotelomer sulfonamide. In another experiment, Forafac®1157 was subjected to UV-light induced photolysis. The experimental conditions aimed to simulate Arctic conditions and the deacetylated species was again the primary transformation product of 6:2 FTAB. A 6:2 fluorotelomer sulfonamide was also formed along with a non-identified transformation product. The environmental presence of most of the metabolites and transformation products was qualitatively demonstrated by analysis of soil samples taken in close proximity to an airport fire training facility.  相似文献   
485.
486.
487.
Thioarsenate formation upon dissolution of orpiment and arsenopyrite   总被引:5,自引:0,他引:5  
Thioarsenates were previously determined as dominant species in geothermal and mineral waters with excess sulfide. Here, we used batch leaching experiments to determine their formation upon weathering or industrial leaching of the arsenic-sulfide minerals orpiment (As2S3) and arsenopyrite (FeAsS) under different pH and oxygen conditions. Under acidic conditions, as expected based on their known kinetic instability at low pH, no thioarsenates formed in either of the two mineral systems. Under neutral to alkaline conditions, orpiment dissolution yielded mono-, di- and trithioarsenate which accounted for up to 43-55% of total arsenic. Thioarsenate formation upon arsenopyrite dissolution was low at neutral (4%) but significant at alkaline pH, especially under suboxic to sulfidic conditions (20-43%, mainly as monothioarsenate). In contrast to orpiment, we postulate that recombination of arsenite and sulfide in solution is of minor importance for monothioarsenate formation during alkaline arsenopyrite dissolution. We propose instead that hydroxyl physisorption lead to formation of As-OH-S surface complexes by transposition of hydroxyl anions to arsenic or iron sites. Concurrently formed ironhydroxides could provide re-sorption sites for the freshly released monothioarsenate. However, sorption experiments with goethite showed slower sorption kinetics of monothioarsenate compared to arsenite, but comparable with arsenate. The discovery that thioarsenates are released by natural weathering and industrial leaching processes and that, once they are released, have a higher mobility than the commonly-investigated species arsenite and arsenate requires future studies to consider them when assessing arsenic release in sulfidic natural or mining-impacted environments.  相似文献   
488.
以Al2O3为载体,分别采用超声辐射浸渍法和普通浸渍方法制备Fe-Ni-Mn/Al2O3催化剂。采用BET、XRD和SEM对催化剂的理化性质和孔结构进行了分析,以模拟酸性绿B废水为研究对象考察催化剂的催化性能。实验结果表明,浸渍溶液pH值和焙烧温度显著影响催化剂的性能。与普通浸渍法相比,超声浸渍法制备的Fe-Ni-Mn/Al2O3催化剂对酸性绿B脱色反应表现出较高的催化活性。  相似文献   
489.
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   
490.
Fe3O4/SDS磁性纳米颗粒吸附水体中的Cd2+和Zn2+   总被引:3,自引:1,他引:2  
黄文  周梅芳 《环境工程学报》2012,6(4):1251-1256
一种新型纳米固相萃取吸附剂,由阴离子表面活性剂十二烷基磺酸钠(SDS)包裹在Fe3O4磁性纳米颗粒表面形成,用于吸附水溶液中的重金属离子。研究了吸附过程的主要影响因素(如SDS浓度、溶液pH等)以及解吸过程的最佳条件,并对其机理进行了初步的探讨。研究结果表明,共沉淀法制备的Fe3O4颗粒粒径分布均匀,平均粒径约为54 nm;SDS浓度为300 mg/L时,Fe3O4/SDS磁性纳米颗粒吸附Cd2+和Zn2+的能力最强;在一定浓度范围内,Fe3O4/SDS体系对Cd2+和Zn2+的吸附平衡数据符合Langmuir吸附等温方程,饱和吸附量分别为22.42 mg/g和13.95 mg/g。最终结果表明,Fe3O4/SDS磁性纳米颗粒具有较强磁分离能力和较好的吸附效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号