全文获取类型
收费全文 | 209篇 |
免费 | 2篇 |
国内免费 | 52篇 |
专业分类
安全科学 | 14篇 |
废物处理 | 3篇 |
环保管理 | 37篇 |
综合类 | 97篇 |
基础理论 | 58篇 |
污染及防治 | 30篇 |
评价与监测 | 4篇 |
社会与环境 | 18篇 |
灾害及防治 | 2篇 |
出版年
2023年 | 2篇 |
2022年 | 7篇 |
2021年 | 5篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 15篇 |
2013年 | 26篇 |
2012年 | 17篇 |
2011年 | 15篇 |
2010年 | 15篇 |
2009年 | 16篇 |
2008年 | 13篇 |
2007年 | 19篇 |
2006年 | 15篇 |
2005年 | 12篇 |
2004年 | 8篇 |
2003年 | 7篇 |
2002年 | 5篇 |
2001年 | 11篇 |
2000年 | 11篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有263条查询结果,搜索用时 15 毫秒
71.
以厌氧颗粒污泥为接种污泥,采用味精生产废水进行培养,在SBR中以逐渐降低污泥沉淀时间的方法成功培养出好氧颗粒污泥。实验结果表明:污泥接种65 d后,出现细小的好氧颗粒污泥,呈黄褐色,95 d后颗粒污泥趋于成熟,粒径达0.6 mm左右,且周围存在大量原生动物;运行95 d后MLSS提高至8.00 g/L,SVI降至30.00 mL/g左右;成熟后的好氧颗粒污泥对味精生产废水中的COD和NH3-N具有良好的去除效果,出水COD和ρ(NH3-N)分别为80 mg/L和2 mg/L左右。 相似文献
72.
Qingxiang Yang Jing Zhang Wenyu Zhang Zhe Wang Yongsheng Xie Hao Zhang 《Journal of environmental science and health. Part. B》2013,48(3):190-197
In this study, the effects of tetracycline exposure on wheat growth and the microbial community structure in the rhizosphere were investigated under hydroponic culture conditions. Exposure to various concentrations of tetracycline resulted in significant suppression of the growth of wheat roots and shoots, with minimum doses of 0.8 mg L?1 and 4 mg L?1 resulting in inhibition rates of 32% and 15.4%, respectively. Complete inhibition of the growth of these two parts of wheat plants was observed in response to treatment with tetracycline at 20 mg L?1 and 100 mg L?1, respectively. However, the germination of wheat seeds was not sensitive to exposure to tetracycline. The effects of tetracycline exposure on the microbial community in the wheat rhizosphere were evaluated through traditional cultivation and molecular biological analyses. The cultivation results indicated that bacteria were the dominant population, being present in concentrations of 1× 108–2.45× 109CFUs mL?1, although 39% to 87% inhibition occurred in response to tetracycline. The concentration of fungi increased in all tetracycline treated samples to 2.5 to 15.8 times that of the control. The highest concentration of fungi (4.27× 108 CFU mL?1) was observed in response to 60 mg L?1 tetracycline after 15 days of cultivation. In this stage, a large amount of fungal colonies was observed on the surface of the culture solution, the wheat roots became rotted and the plants became atrophic or even died. Molecular biological analysis indicated that the bacterial community structure was significantly different in samples that were exposed to high levels of tetracycline (over 20 mg L?1) than in samples that were exposed to lower concentrations. As the concentration of tetracycline increased, the diversity of the bacteria decreased. Additionally, several dominant sensitive species such as Sphingobacterium multivorum were suppressed by tetracycline, while some resistant species such as Acinetobacter sp. appeared or were conserved. The bacteria population tended to stabilize when the drug concentration exceeded 40 mg L?1. 相似文献
73.
Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western United States rivers to control introduced shrubs in the genus Tamarix, with the goals of saving water through removal of an assumed high water‐use plant, and of improving habitat value by removing a competitor of native riparian trees. We review recent studies addressing three questions: (1) to what extent are Tamarix weakened or killed by recurrent cycles of defoliation; (2) can significant water salvage be expected from defoliation; and (3) what are the effects of defoliation on riparian ecology, particularly on avian habit? Defoliation has been patchy at many sites, and shrubs at some sites recover each year even after multiple years of defoliation. Tamarix evapotranspiration (ET) is much lower than originally assumed in estimates of potential water savings, and are the same or lower than possible replacement plants. There is concern that the endangered southwestern willow flycatcher (Empidonax trailli extimus) will be negatively affected by defoliation because the birds build nests early in the season when Tamarix is still green, but are still on their nests during the period of summer defoliation. Affected river systems will require continued monitoring and development of adaptive management practices to maintain or enhance riparian habitat values. Multiplatform remote sensing methods are playing an essential role in monitoring defoliation and rates of ET on affected river systems. 相似文献
74.
Junhong Yang Xuyang Cui Yuanzheng Feng Guangning Jing Ligai Kang Mengyuan Luo 《International Journal of Green Energy》2017,14(15):1269-1276
Microalgae have been identified as a superior feedstock for biodiesel production and varied tubular photobioreactors are developed for high efficient and scale-up microalgae cultivation. This article presented a novel concentric double tubes using aeration through radial pores along the length direction of inner tube. Experiments on microalgae cultivation were carried out in the novel photobioreactor, and two control groups including concentric double tubes with axial aeration at both ends and common tubular. The biomass productivity of novel photobioreactor increased by 43.6% and 107.4%, respectively, compared with concentric double tubes with axial aeration at both ends and common tubular without aeration. The values of pH shifted from 7.5 to 9.0 for novel photobioreactor, but 7.5 to 8.8 for common tubular, and 7.5 to 9.6 for concentric double tubes with axial aeration. The dissolved oxygen concentration fluctuated between 6.0 and 7.0 mg·L?1 for novel photobioreactor, but rose from 6.6 to 10.2 mg·L?1 for the common tubular, and 6.9 to 8.1 mg·L?1 for the concentric with axial aeration. Results show that the aeration style of novel photobioreactor can make efficient local mixing and maintain smaller range of pH and lower level of dissolved oxygen in case of higher biomass concentration. Moreover, compared with the two control groups, the novel concentric double tubes have advantages on the light/dark cycle frequency, which may be benefit for microalgae cultivation. The novel concentric double tubes presented in this work can give some inspiration for high efficiency microalgae cultivation. 相似文献
75.
76.
77.
工业废水污染日趋严重,水体中重金属钴污染因难处理、高危害等问题成为废水净化的关键.传统治理重金属工业废水的方法难以应用.为寻求处理工业废水"绿色生态"可行性路径,本文以葡萄藻Botryococcus braunii SAG 807-1为研究对象,应用贴壁培养技术对含钴工业废水进行处理研究.结果表明,葡萄藻贴壁培养可处理工业废水,4.5 mg·L~(-1)Co~(2+)对葡萄藻生长影响不大,却可以促进长链烃类的合成,提高烃产量.葡萄藻贴壁培养去除Co2+的能力为1 473.9μmol·g~(-1),远高于报道的微藻P.littoralis.本研究为绿色高能燃料烃类的生产与工业废水处理耦合提供理论基础. 相似文献
78.
Bambang Hero Saharjo 《Mitigation and Adaptation Strategies for Global Change》2007,12(1):135-146
Transboundary haze pollution from smoke from land preparation fires has become a perennial problem in Indonesia, especially
in the last 10 years during the dry season. Most of that smoke originates from illegal land preparation fires for oil palm
and industrial forest plantation as well as from shifting cultivation, which is usually blamed for the smoke. In order to
understand the role of fire in shifting cultivation areas dominated by peat soils, research was conducted during the dry season
of 2001 on land belonging to the community of Pelalawan village, Pelalawan district, Riau province, Indonesia. The research
showed that burning did not affect all peat areas equally. No peat was burned on a fibric site, while burning on a hemic site
varied in depth from 6.0 cm to 12.6 cm, and on a sapric site from 15.4 cm to 31.9 cm. Further, on the fibric site only phosphorus
increased significantly following burning, while on the hemic only the base saturation increased; on the sapric site, however,
both base saturation and phosphorus increased compared to the condition before burning. These data show that if fire is continues
to be used for land preparation in peat areas, peat becomes critically endangered. 相似文献
79.
80.
为研究我国北方典型设施菜地的土壤CO2排放特征及其影响因素,通过原位监测手段,研究山东省寿光市农田转变为不同种植年限(6、12 a)设施菜地及设施菜地荒废12 a后土壤CO2排放规律及影响因素.结果表明:①种植6 a设施菜地较农田具有较高的土壤CO2排放量,可能是由于设施菜地种植过程中大量施加有机肥造成的,并且设施菜地土壤温度及含水率较高,增加了土壤蔗糖酶活性,加剧土壤CO2排放.②当种植年限超过10 a,设施菜地施肥量减少,降低了土壤微生物可利用底物的供应.因此,种植12 a设施菜地土壤CO2排放量降至农田水平.③种植6 a设施菜地土壤的w(DOC)(DOC表示水溶性有机碳)比农田较高.④土壤CO2排放年内分配不均匀,表现为农田及荒废设施菜地土壤CO2排放主要集中在5—8月,其排放量占全年的75.09%、87.02%,峰值出现在7月.种植6 a设施菜地土壤CO2排放主要集中在5—8月和11月—翌年2月,两阶段排放量分别占全年的48.48%、42.34%,峰值分别出现在7月、12月.研究显示,农田转变为设施菜地短期(种植6 a)内可显著促进土壤CO2排放及DOC的输出,但随着种植年限延长至12 a,土壤CO2排放降至农田水平. 相似文献