首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
  国内免费   30篇
安全科学   11篇
环保管理   15篇
综合类   41篇
基础理论   17篇
污染及防治   18篇
评价与监测   1篇
社会与环境   3篇
灾害及防治   1篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2013年   2篇
  2012年   6篇
  2011年   9篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
41.
The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene, in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy (ATR-FTIR) was used to monitor the surface speciation at the nano-Fe3O4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals, and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.  相似文献   
42.
The metal-based catalytic oxidation of alkenes to the corresponding epoxides is playing a significant role in the modern chemical industry. Nevertheless, these key processes are still lacking proper understanding with respect to the gas-phase runaway behaviour (thermal explosion) and to the hot spot formation on the catalytic surface, under the typical process conditions.This work aims to enlighten these aspects by considering either the catalytic or the gas-phase chemistry for the development of reactor operative diagrams, in order to define the best-operating conditions with respect to the selectivity, the productivity, and the process safety aspects.The proposed methodology has been applied to the oxidation of ethylene and propylene for the direct oxidation process by pure oxygen, considering a detailed kinetic model accounting for the homogeneous reactions, coupled with the heterogeneous catalytic mechanisms.Sensitivity and reaction path analyses were performed to individuate the ruling species and reactions determining the transition to runaway conditions.  相似文献   
43.
In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hy-droxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu:Mg:Al molar ratio of 3:3:2, NaOH:Na2CO3 molar ratio of 2:1, and calcination temperature of 600 °C. CuMgAl-LDO is a char-acteristic of mesoporous material with a lamellar structure and large specific surface area. The removal efficiency of sulfameter (SMD) based on CuMgAl-LDO/persulfate (PS) can reach>98%over a wide range of initial SMD concentrations (5–20 mg L-1). The best removal efficiency of 99.49%was achieved within 120 min using 10 mg L-1 SMD, 0.3 g L-1 CuMgAl-LDO, and 0.7 mmol L-1 PS. Kinetic analysis showed that the degradation of SMD was in accordance with a quasi-first-order kinetic model. The stability of the CuMgAl-LDO catalyst was verified by the high SMD removal efficiency (> 97% within 120 min) observed after five recycling tests and low copper ion leaching concentration (0.89 mg L-1), which is below drinking water quality standard of 1.3 mg L-1 permittable in the U.S. Radical scavenging experiments suggest that SO·4- is the primary active species participating in the CuMgAl-LDO/PS system. Moreover, our mechanistic investigations based on the radical scavenging tests and X-ray photoelectron spectroscopy (XPS) results indicate that Cu(II)–Cu(III)–Cu(II) circulation is responsible for activating PS in the degradation of SMD and the degradation pathway for SMD was deduced. Accordingly, the results presented in this work demonstrate that CuMgAl-LDO may be an efficient and stable catalyst for the activation of PS during the degradation of organic pollutants. ? 2020, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communi-cations Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).  相似文献   
44.
多相催化臭氧氧化技术机理研究进展   总被引:1,自引:0,他引:1  
段标标  隋铭皓 《四川环境》2011,30(3):123-127
多相催化臭氧氧化技术能够有效去除水中的微量有机物。尽管有越来越多的研究致力于多相催化臭氧氧化技术领域,以及各种新的催化剂的引入,但对于多相催化臭氧氧化技术机理尚不清楚。因此,本文针对多相催化臭氧氧化技术中常用的负载型金属、负载型金属氧化物以及活性炭三类催化剂的反应机理进行了探讨。此外还对机理研究中存在的问题进行了探讨。  相似文献   
45.
Heterogeneous reactions of NO2 on different surfaces play an important role in atmospheric NOx removal and HONO formation, having profound impacts on photochemistry in polluted urban areas. Previous studies have suggested that the NO2 uptake on the ground or aerosol surfaces could be a dominant source for elevated HONO during the daytime. However, the uptake behavior of NO2 varies with different surfaces, and different uptake coefficients were used or derived in different studies. To obtain a more holistic picture of heterogeneous NO2 uptake on different surfaces, a series of laboratory experiments using different flow tube reactors was conducted, and the NO2 uptake coefficients (γ) were determined on inorganic particles, sea water and urban grime. The results showed that heterogeneous reactions on those surfaces were generally weak in dark conditions, with the measured γ varied from <10?8 to 3.2 × 10?7 under different humidity. A photo-enhanced uptake of NO2 on urban grime was observed, with the obvious formation of HONO and NO from the heterogeneous reaction. The photo-enhanced γ was measured to be 1.9 × 10?6 at 5% relative humidity (RH) and 5.8 × 10?6 at 70% RH on urban grime, showing a positive RH dependence for both NO2 uptake and HONO formation. The results demonstrate an important role of urban grime in the daytime NO2-to-HONO conversion, and could be helpful to explain the unknown daytime HONO source in the polluted urban area.  相似文献   
46.
半导体多相光催化技术研究现状及发展趋势   总被引:1,自引:0,他引:1  
半导体多相光催化技术是光化学领域和环保领域中的研究热点之一。本文综述了半导体多相光催化反应机理、反应动力学、影响半导体多相光催化降解的因素、目前半导体多相光催化技术在实际环境中的应用,并对其前景及发展方向作出展望。  相似文献   
47.
The atmospheric chemical composition is affected by the interaction mechanisms among gases and particulate matter through a wide range of chemical reactions that can occur with the aid of particulate matter (e.g. particles act as reacting or absorbing surfaces) or be influenced by the presence of particulate matter in the atmosphere (photochemical reactions). Physical and chemical processes are also bonded in an interactive way that often leads to the influence of the radiation budget, cloud physics and the warming or cooling of the lower atmospheric levels. The Euro-Mediterranean region is a key-sensitive area due to the unique climatic and air quality characteristics associated with the regional climatic patterns, geomorphology (land and water contrast) and coexistence of pollutants from different origin. Focusing on this region, the gas-aerosol interactions are studied using state-of-the-art atmospheric and chemical transport modeling tools following the necessary development in the chemical transport model CAMx. Sensitivity and large-scale simulations have shown significant responses of the modeling system to the inclusion of natural species emissions, the direct shading effect of dust particles on photochemical processes and the formation of new types of aerosols through heterogeneous uptake of gases on dust particles. Including such interactions in the chemical transport model often led to the improvement of the model performance compared with available measurements in the region.  相似文献   
48.
Novel photo-Fenton catalysts were prepared by immobilizing iron species on commercial bentonite plates via two methods: (1) ion exchange reaction (Fe3+ vs. Na+) by aqueous suspension powder-clay/FeCl3 followed by plate preparation, and (2) forced hydrolysis of Fe(NO3)3 onto a prefabricated clay plate. The last method led to a more photo-active Fe-oxide/bentonite plate. This material allowed, at a non-adjusted initial pH of 5.5 and in the presence of H2O2, the total degradation of resorcinol and 55% mineralization in 80 and 100 min of irradiation, respectively. The reached degradation percentages were correlated to the presence of dissolved iron, demonstrating that in these processes, the homogeneous photo-Fenton reactions were mainly responsible for the resorcinol elimination.Likewise, in slurry system, where clay has normally an increased surface area, there was no increase in activity because of a reduced leached iron probably due to the diminished light penetration in the suspension. Despite the lower surface area, in comparison to that of the slurry, the clay plates have the advantage, as heterogeneous photo-catalysts, that separation of the reaction media after treatment is not needed, and thus, a potential use for batch and continuous reaction systems is proposed.  相似文献   
49.
This work focuses on the phenomenon of the immiscible two-phase flow of water and oil in saturated heterogeneous soil columns. The goal is to develop a fast and reliable method for quantifying soil heterogeneities for incorporation into the relevant capillary pressure and relative permeability functions. Such data are commonly used as input data in simulators of contaminant transport in the subsurface. Rate-controlled drainage experiments are performed on undisturbed soil columns and the transient response of the axial distribution of water saturation is determined from electrical measurements. The transient responses of the axial distribution of water saturation and total pressure drop are fitted with the multi-flowpath model (MFPM) where the pore space is regarded as a system of parallel paths of different permeability. The MFPM enables us to quantify soil heterogeneity at two scales: the micro-scale parameters describe on average the effects of pore network heterogeneities on the two-phase flow pattern; the macro-scale parameters indicate the variability of permeability at the scale of interconnected pore networks. The capillary pressure curve is consistent with that measured with mercury intrusion porosimetry over the low pressure range. The oil relative permeability increases sharply at a very low oil saturation (< 10− 3) and tends to a high end value. The water relative permeability decreases abruptly at a low oil saturation (~ 0.1), whereas the irreducible wetting phase saturation is quite high. The foregoing characteristics of the two-phase flow properties are associated with critical (preferential) flowpaths that comprise a very small percentage of the total pore volume, control the overall hydraulic conductivity, and are consistent with the very broad range of pore-length scales usually probed in soil porous matrix.  相似文献   
50.
总结了国内外有关科技型中小企业技术创新基金的相关理论研究,在此基础上通过分析了我国创新基金的产生、特征,指出了创新基金发展过程中所做出的经济贡献和存在的问题,提出了相关的政策建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号