首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   3篇
环保管理   2篇
综合类   5篇
基础理论   3篇
污染及防治   15篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
Arsenic accumulation by ferns: a field survey in southern China   总被引:1,自引:0,他引:1  
The objective of this study reported here was to characterize arsenic (As) accumulation by Pteris ferns by comparing 3 of the ferns of this genus with each other as well as with four non-Pteris ferns growing on seven sites in southern China with different As levels. A total of 112 samples, including 78 Pteris vittata, 13 P. cretica, 3 P. multifida and 18 ferns from other non-Pteris genera, with the soils in which they grew were collected for As and other elemental analyses. P. vittata was found to be the most dominant species and the most efficient As-accumulator, whereas P. multifida was the lowest As-accumulator among the Pteris ferns, with 4.54–3599, 28.7–757 and 11.2–341 mg kg–1 As recorded in the fronds of P. vittata, P. cretica and P. multifida, respectively. Arsenic concentrations in non-Pteris ferns were generally much lower than those in Pteris ferns, with 0.81–1.32, 3.59, 10.7, 6.17–24.3 mg kg–1 in the fronds of Blechumum orientale, Dicranopteris dichotoma, Pteridium aquilinum and Cyclosorus acuminatus, respectively. For P. vittata, the As bioaccumulation factor (ratio of As in fronds to that in soils) changed, whereas the As translocation factor (ratio of As in fronds to that in roots) remained unchanged among the different sites. The concentrations of Fe were very high in all of the collected fern sample, with the exception of B.␣orientale, with 207–6865, 637–3369, 375–1856, 1876, 493-6865 and 492 mg kg–1 in the fronds of P. vittata, P. cretica, P. multifida, C. acuminatus, P. aquilinum and D. dichotoma, respectively. The association between Fe accumulation and As accumulation and tolerance in these ferns indicates the unique role of Fe in As-hyperaccumulation.  相似文献   
12.
Tian S  Lu L  Zhang J  Wang K  Brown P  He Z  Liang J  Yang X 《Chemosphere》2011,84(1):63-69
Sedum alfredii is a well-known Cd (cadmium) hyperaccumulator native to China. The impacts of exogenous Ca on Cd-induced oxidative stress and antioxidant systems in roots of S. alfredii were investigated by using cellular and biochemical approaches. Supplementation of the medium with higher Ca levels resulted in alleviated growth inhibition and decreased Cd concentration, as well as increased Ca concentration in roots. Cadmium induced lipid peroxidation and loss of plasma membrane integrity, reactive oxygen species overproduction, as well as ultrastructural changes of root cells were largely reversed by Ca supplementation in the medium. Calcium application significantly altered the Cd effects on antioxidant enzymes and non-enzyme antioxidants (non-protein thiols), and significantly increased glutathione (GSH) biosynthesis. The results suggest that Ca is able to protect the roots of S. alfredii against Cd toxicity by restoration of Cd-displaced Ca, alleviation of the metal induced oxidative stress, as well as promotion of GSH biosynthesis.  相似文献   
13.
Sedum alfredii Hance is a cadmium(Cd)/zinc(Zn) hyperaccumulator native to China.However, its relatively low biomass restricted the large-scale application for heavy metal contamination remediation. The chromosome set doubling of S. alfredii in vitro was achieved by 0.1%–0.2%(W/V) colchicine treatment. The plant DNA ploidy was analyzed by flow cytometry and chromosome set doubling plants(CSD) were identified based on the obvious different sharp peak. A tissue culture experiment with different Cd treated levels and a field trial with natural polluted mined soil were conducted to study the effects of chromosome doubling on plant biomass and Cd accumulation in shoots. The results suggested that S.alfredii is a mixoploid. Compared with the wild type plants(WT), CSD exhibited typical"gigas" characteristics in morphology including stem thickness, root hair production,number of leaves and size of stoma guard cell. Fresh weight and dry weight of CSD were increased to 1.62–2.03-fold and 2.26–3.25-fold of WT. And Cd content of CSD showed a17.49%–42.82% increase and 59% increase under tissue culture and field condition,accordingly. In addition, the TF and in BCF of CSD were 2.37-and 1.59-fold of WT,respectively. These results proved that it is feasible to promote phytoextraction efficiency of S. alfredii in Cd contaminated soils through chromosomal engineering, which provides a novel approach for hyperaccumulator application in phytoremediation.  相似文献   
14.
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.  相似文献   
15.
Pteris vittata is known to hyperaccumulate As but the mechanism is poorly understood. We found an increase of As concentration with increasing soil solution As concentrations, but P application had no impact, although plant P concentrations responded to different rates of P supply. As in fronds was dominantly (82–89%) present in the form of AsIII. In roots we detected 45% as AsIII which is higher than reported in previous studies and supports substantial As-reduction to take place in roots. We detected PC2/3GS–AsIII, PC2–GS–AsIII and (PC2)2–AsIII in increasing amounts with application of As. The total amount of PC was in the range reported previously and far too small to assign a significant role in As detoxification to PCs. The close correlation between S and As in fronds and the lack of data on sulphur uptake and metabolism indicates the need for a detailed investigation on sulphur nutritional status and As metabolism in P. vittata.  相似文献   
16.
Li T  Xu Z  Han X  Yang X  Sparks DL 《Chemosphere》2012,88(5):570-576
Pot experiments were performed to investigate the characteristics of dissolved organic matter (DOM) in the rhizosphere soil of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on the mobility of zinc (Zn). DOM was fractionated using XAD resins into six fractions. The acid fraction was the predominant component of DOM in the rhizosphere of S. alfredii, with hydrophilic acid (HiA), hydrophilic base (HiB), and hydrophilic neutral (HiN) in HE-DOM being 1.6, 1.9, and 1.2 times higher respectively, as compared to NHE-DOM. ATR-FTIR results showed that DOM in the rhizosphere of S. alfredii consisted of a mixture of hydroxylated and carboxylic acids, and HE-DOM exhibited more CO, OH, CC and CO functional groups than NHE-DOM. Resin equilibration experiment results indicated that DOM from the rhizosphere of both ecotypes of S. alfredii had the ability to form complexes with Zn, whereas the degree of complexation was significantly higher for HE-DOM (60%) than NHE-DOM (42%). The addition of HE-DOM significantly (P < 0.05) increased the solubility of four Zn minerals while NHE-DOM was not as effective at the same concentration. It was concluded that DOM derived from the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Zn mobility through the formation of soluble DOM-metal complexes, this might be one of the important mechanism by which S. alfredii is involved in activating metal in rhizosphere.  相似文献   
17.
关于超富集植物的新理解   总被引:76,自引:2,他引:76  
聂发辉 《生态环境》2005,14(1):136-138
长期以来重金属超富集植物定义存在着严重的不足,新的评价系数的提出势在必行。文章在生物富集系数和转运系数的基础上创造性地提出了新的评价系数即生物富集量系数,其内涵为给定生长期内单位面积地上部分植物吸收的重金属总量与土壤含量之比。此系数的提出扩大了传统超富集植物的定义,使得富集质量分数未达某一水平,但生物量很大的植物也能作为超富集植物。这为今后超富集植物的筛选提供了一定的参考,为土壤重金属污染的植物修复工程提供了理论基础。  相似文献   
18.
关于hyperaccumulator中文译名的探讨   总被引:2,自引:1,他引:2  
植物修复技术是环境科学与技术的热点和前沿领域,hyperaccumulator作为植物修复技术的核心和及hyperaccumulator内容的文献也增长迅速,但从已发表的文献来看,国内对“hyperaccumulator”的中文翻译很不统一.这种“一词多译”的现象很不利于学术交流.为了规范和统一hyperaccumulator的中文译名,本文从hyperaccumulator的定义和科学内涵探讨其中文译名的准确性.  相似文献   
19.
Eichhornia crassipes is a hyperaccumulator of metals and has been widely used to remove metal pollutants from water, but disposal of contaminated plants is problematic.Biochar prepared from plants is commonly used to remediate soils and sequester carbon.Here, the catalytic activity of biochar prepared from plants enriched with iron was investigated as a potentially beneficial use of metal-contaminated plants.In a 30-day hydroponic experiment, E.crassipes was exposed to different concentrations of Fe(Ⅲ)(0, 4, 8, 16, 32 and 64 mg/L), and Fe-biochar(Fe-BC) was prepared by pyrolysis of the plant roots.The biochar was characterized using X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive X-ray spectrometry(EDS), Brunauer–Emmett–Teller(BET) analysis, X-ray photoelectron spectroscopy(XPS) and atomic absorption spectrometry(AAS).The original root morphology was visible and iron was present as γ-Fe_2O_3 and Fe_3O_4.The biochar enriched with Fe(Ⅲ) at 8 mg/L(8-Fe-BC) had the smallest specific surface area(SSA, 13.54 m~2/g) and the highest Fe content(27.9 mg/g).Fe-BC catalytic activity was tested in the electrocatalytic reduction of H_2O_2 using cyclic voltammetry(CV).The largest reduction current(1.82 mA/cm~2) was displayed by 8-Fe-BC, indicating the highest potential catalytic activity.We report here, for the first time, on the catalytic activity of biochar made from iron-enriched plants and demonstrate the potential for reusing metalcontaminated plants to produce a biochar catalyst.  相似文献   
20.
Meighan MM  Fenus T  Karey E  MacNeil J 《Chemosphere》2011,83(11):1539-1545
In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd2+ in hydroponic solution had initial translocation rates of at least 0.12 mmol kg−1 h−1 and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g−1 and extracting 1400 μg plant−1. When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g−1 min−1. The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号