首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   3篇
环保管理   2篇
综合类   5篇
基础理论   3篇
污染及防治   15篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
Zeng XW  Qiu RL  Ying RR  Tang YT  Tang L  Fang XH 《Chemosphere》2011,82(3):321-328
The Zn/Cd hyperaccumulator Arabis paniculata is able to tolerate high level of Zn and Cd. To clarify the molecular basis of Zn and Cd tolerance, proteomic approaches were applied to identify proteins involved in Zn and Cd stress response in A. paniculata. Plants were exposed to both low and high Zn or Cd levels for 10 d. Proteins of leaves in each treatment were separated by 2-DE (two-dimensional electrophoresis). Nineteen differentially-expressed proteins upon Zn treatments and 18 proteins upon Cd treatments were observed. Seventeen out of 19 of Zn-responsive proteins and 16 out of 18 of Cd-responsive proteins were identified using MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry). The most of identified proteins were known to function in energy metabolism, xenobiotic/antioxidant defense, cellular metabolism, protein metabolism, suggesting the responses of A. paniculata to Zn and Cd share similar pathway to certain extend. However, the different metal defense was also revealed between Zn and Cd treatment in A. paniculata. These results indicated that A. paniculata against to Zn stress mainly by enhancement of energy metabolism including auxin biosynthesis and protein metabolism to maintain plant growth and correct misfolded proteins. In the case of Cd, plants adopted antioxidative/xenobiotic defense and cellular metabolism to keep cellular redox homeostasis and metal-transportation under Cd stress.  相似文献   
22.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   
23.
● Improved Cr phytoextration efficiency was achieved by B. cereus inoculation. B. cereus could produce plant-beneficial PGPR factors at diverse Cr stresses. ● Enhanced resistance of inoculated L. hexandra towards elevated Cr stress. ● The majority of Cr existed in the stable forms in the tissues of L. hexandra. Phytoextraction is a promising option for purifying hexavalent chromium (Cr(VI))-laden wastewater, but the long remediation period incurred by poor growth rate of Cr hyperaccumulators remains a primary hindrance to its large-scale application. In this study, we performed a hydroponic experiment to evaluate the feasibility of promoting the growth and phytoextraction efficiency of Cr hyperaccumulator Leersia hexandra Swartz (L. hexandra) by inoculating plant growth-promoting rhizobacteria (PGPR) Bacillus cereus (B. cereus). In batch tests, the Cr(VI) removal rates of L. hexandra and B. cereus co-culture were greater than the sum of their respective monocultures. This was likely due to the microbial reduction of Cr(VI) to Cr(III), which is amiable to plant uptake. Besides, the PGPR factors of B. cereus, including indoleacetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid deamination (ACCd) activity, phosphate solubilization capacity, and siderophore production, were quantified. These PGPR factors helped explain the biomass augmentation, root elongation and enhanced Cr enrichment of the inoculated L. hexandra in pot experiments. Despite the increased Cr uptake, no aggravated oxidative damage to the cell membrane was observed in the inoculated L. hexandra. This was attributed to its capacity to confront the increased intracellular Cr stress by upregulating both the activities of antioxidative enzymes and expression of metal-binding proteins/peptides. Moreover, L. hexandra could always conserve the majority of Cr in the residual and oxalic integrated forms with low mobility and phytotoxicity, irrespective of the B. cereus inoculation. These results highlight the constructed Cr hyperaccumulator-rhizobacteria consortia as an effective candidate for decontaminating Cr(VI)-laden wastewater.  相似文献   
24.
The term “phytoremediation” is used to describe the cleanup of heavy metals from contaminated sites by plants. This study demonstrates phytoremediation potential of Indian mustard (Brasicca juncea (L.) Czern. & Coss.) genotypes for chromium (Cr). Seedlings of 10 genotypes were grown hydroponically in artificially contaminated water over a range of environmentally relevant concentrations of Cr (VI), and the responses of genotypes in the presence of Cr, with reference to Cr accumulation, its phytotoxity and anti-oxidative system were investigated. The Cr accumulation potential varied largely among Indian mustard genotypes. At 100 μM Cr treatment, Pusa Jai Kisan accumulated the maximum amount of Cr (1680 μg Cr g−1 DW) whereas Vardhan accumulated the minimum (107 μg Cr g−1 DW). As the tolerance of metals is a key plant characteristic required for phytoremediation purpose, effects of various levels of Cr on biomass were evaluated as the gross effect. The extent of oxidative stress caused by Cr stress was measured as rate of lipid peroxidation. The level of thiobarbituric acid reactive substances (TBARS) was enhanced at all Cr treatments when compared to the control. Inductions of enzymatic and nonenzymatic antioxidants were monitored as metal-detoxifying responses. All the genotypes responded to Cr-induced oxidative stress by modulating nonenzymatic antioxidants [glutathione (GSH) and ascorbate (Asc)] and enzymatic antioxidants [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)]. The level of induction, however, differed among the genotypes, being at its maximum in Pusa Jai Kisan and its minimum in Vardhan. Pusa Jai Kisan was grown under natural field conditions with various Cr treatments, and Cr-accumulation capacity was studied. The results confirmed that Pusa Jai Kisan is a hyperaccumulator of Cr and hypertolerant to Cr-induced stress, which makes this genotype a viable candidate for use in the development of phytoremediation technology of Cr-contaminated sites.  相似文献   
25.
利用重金属超富集植物的吸收,积累环境中的污染物,是近年来发展起来的一种可清除土壤重金属污粢的植物修复技术。本文主要综述砷、镉、镍等几种具有代表性的重金属超富集植物,探讨了超富集植物的富集机理和特征,重点讨论了近年来重金属超富集植物的发展现状和今后的发展趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号