首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  国内免费   15篇
安全科学   1篇
环保管理   1篇
综合类   20篇
基础理论   26篇
污染及防治   28篇
评价与监测   7篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   17篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
51.
A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method’s performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70–105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R2=0.9982) was obtained over the concentration range of 0.01–1.5?mg kg?1. The LOD was determined to be 0.002?mg kg?1 for rice and 0.004?mg kg?1 for maize. The LOQ was 0.01?mg kg?1 for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.  相似文献   
52.
MC analysis of biological tissue is considered to be very difficult due to the lack of validated methods. This is the primary limiting factor for monitoring potential risks in both the flesh of aquatic organisms and the aquatic ecosystem. In this study, an effective method to determine free MCs (MC-LR and MC-RR) in the muscle and liver tissues of freshwater cultured fish was developed using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC/MS-MS). The extraction solvent, time of extraction, eluent and purification of the extract were optimized. Various SPE cartridges were also investigated. In this optimized analytical procedure, an 85% methanol/water solution (v/v) was selected as the extraction solvent, after which the extracts were purified by removing fats and proteins; a HLB cartridge was chosen for MCs enrichment; and 90% methanol containing 0.02% formic acid/water solution (v/v) was used as the eluent. Under the optimized pretreatment conditions and instrument parameters, good recoveries of MC-LR and MC-RR were obtained at three concentrations (0.5, 1.0 and 2.0 µg g?1 dry weight (DW)), with values ranging from 92.5 to 98.3% and 92.1 to 98.6%, respectively. The method detection limit (MDL) for muscle samples was 0.5 µg kg?1 and 0.4 µg kg?1 (DW) for MC-LR and MC-RR, respectively. The MDL for the liver samples was 0.8 µg kg?1 (DW) for both MC-LR and MC-RR. The developed procedure was successfully applied to analyze MCs in the muscle and liver of fish samples collected from a Chinese freshwater aquaculture pond during bloom seasons. The MC-LR concentrations ranged from below the MDL to 4.17 µg kg?1 and the MC-RR concentrations ranged from below the MDL to 2.64 µg kg?1.  相似文献   
53.
徐州地区地下水中内分泌干扰物的监测与风险评估   总被引:4,自引:0,他引:4  
采用液相色谱-串联质谱法测定徐州地区地下水中内分泌干扰物,并用雌二醇当量EEQ计算法和风险熵RQ计算法分别对其活性和生态风险水平分析评价。结果表明,徐州地区地下水中不含雌酮(E1)、雌二醇(E2)、雌三醇(E3)、炔雌醇(EE2)等内分泌干扰物,只含有双酚A(BPA),且最高值达26.45 ng/L,提出应把BPA作为控制重点。  相似文献   
54.
氟对西伯利亚鲟仔鱼的急性毒性及安全浓度评价   总被引:3,自引:0,他引:3  
为检测氟对鱼类的生态毒性效应,在水温(17±1)℃的条件下,采用半静态式生物毒性试验方法研究了氟离子对西伯利亚鲟初孵仔鱼的急性毒性效应(氟离子浓度梯度设置为0、100、200、300、400、500、600mg·L-1).结果表明,氟暴露后仔鱼出现焦躁不安、失去平衡、呼吸减弱等中毒症状,且随着暴露浓度的升高与暴露时间的延长,死亡率逐渐增加,存在明显的剂量效应关系和时间效应关系.氟对西伯利亚鲟初孵仔鱼48h、72h、96hLC50分别为1014.10mg·L-1、288.28mg·L-1、181.18mg·L-1.经计算得出氟对西伯利亚鲟初孵仔鱼安全质量浓度为1.81mg·L-1,低于我国部分高氟地区地下水、地表水及人为氟污染水域中氟的浓度,应引起高度重视.  相似文献   
55.
Wei X  Huang Y  Wong MH  Giesy JP  Wong CK 《Chemosphere》2011,85(1):122-128
Bisphenol A (BPA) is a high production-volume chemical used in the manufacture of a wide variety of consumer products. However it is also a ubiquitous contaminant that can interfere with endocrine systems of wildlife and humans. China is the “world factory” and the Pearl River Delta is the major manufacturing center and is consequently polluted. Concentrations of BPA in meats of marketable fish had not been previously reported for this region. In the study upon which we report here concentrations of BPA were determined in 20 common species of freshwater and marine fish, collected from markets in Hong Kong, SAR, China. A comprehensive analytical method based on SPE extraction and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was developed, validated and applied. The method limit of detection (LOD) and limit of quantification (LOQ) were 0.5 and 1.25 ng g−1 dw, respectively. BPA was detected in 19 species of fish at concentrations, ranging from 0.5 to 2.0 ng g−1 ww. Average daily BPA intake per person ranged from 1.1 × 102 ng d−1 for marine fish and 2.2 × 102 ng d−1 for freshwater fish. Concentrations of BPA in fish from Hong Kong markets unlikely would be causing adverse population-level effects in humans.  相似文献   
56.
57.
1,2,5,6-Tetrabromocyclooctane (TBCO) is a commercial brominated flame retardant that is employed mainly as an additive in textiles, paints and plastics. Very little is known about its presence or behavior in the environment or its analysis. TBCO can exist as two diastereomers, the stereochemistries of which have not been previously reported. We have named the first eluting isomer, under HPLC conditions, as alpha-TBCO (α-TBCO) and the later eluting isomer as beta-TBCO (β-TBCO) when using an Acquity UPLC BEH C18 column with methanol/acetonitrile/water as the mobile phase. The structural elucidation of these two isomers was accomplished by 1H NMR spectroscopy, GC/MS, LC/MS and X-ray structure determinations. α-TBCO is (1R,2R,5S,6S)-1,2,5,6-tetrabromocyclooctane and β-TBCO is rac-(1R,2R,5R,6R)-1,2,5,6-tetrabromocyclooctane. As with some other brominated cycloaliphatic compounds, TBCO is thermally labile and the isomers easily interconvert. A thermal equilibrium mixture of α- and β-TBCO consists of approximately 15% and 85% of these isomers, respectively. Separation of the two diastereomers, with minimal thermal interconversion between them, is achievable by careful selection of GC-capillary column length and injector temperature. LC/MS analyses of TBCO also presents an analytical challenge due to poor resolution of the isomers on chromatographic stationary phases, and weak intensity of molecular ions (or major fragment ions) when using LC-ESI/MS. Only bromide ions were seen in the mass spectra. APCI and APPI also failed to produce the molecular ion with sufficient intensity for identification.  相似文献   
58.
A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup.

The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70–92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3–15%. For all compounds, good linearity (r2 > 0.99) was obtained over the range of concentration from 0.05 μ g/mL to 0.5 μ g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.  相似文献   
59.
A sensitive and specific method for the determination of propineb and its metabolites, propylenethiourea (PTU) and propylenediamine (PDA), using gas chromatography with flame photometric detection (GC-FPD) and LC–MS/MS was developed and validated. Propineb and its metabolite residue dynamics in supervised field trials under Good Agricultural Practice (GAP) conditions in banana and soil were studied. Recovery of propineb (as CS2), PDA and PTU ranged from 75.3 to 115.4% with RSD (n = 5) of 1.3–11.1%. The limit of quantification (LOQ) of CS2, PDA and PTU ranged from 0.005 to 0.01 mg kg?1, and the limit of detection (LOD) ranged from 0.0015 to 0.0033 mg kg?1. Dissipation experiments showed that the half-life of propineb in banana and soil ranged from 4.4 to 13.3 days. PTU was found in banana with a half-life of 31.5–69.3 days, while levels of PDA were less than 0.01 mg kg?1 in banana and soil. It has been suggested that PTU is the major metabolite of propineb in banana. The method was demonstrated to be reliable and sensitive for the routine monitoring of propineb and its metabolites in banana and soil. It also serves as a reference for the detection and monitoring of dithiocarbamates (DTCs) residues and the evaluation of their metabolic pathway.  相似文献   
60.
目的提高La_2Ce_2O_7(LC)陶瓷材料的断裂韧性。方法采用固相反应方法合成Y_2O_3稳定ZrO_2(YSZ)掺杂的La_2Ce_2O_7(LC)陶瓷材料(LCZ),研究LCZ块材的弹性模量、断裂韧性等力学性能,以及热膨胀系数、热传导率等热物理性能。结果 10%YSZ摩尔分数掺杂的LCZ块材的断裂韧性约为1.4 MPa·m1/2,比LC提高了近10%。YSZ掺杂有效地抑制了LC在200~400℃温度区间热膨胀系数下降的现象。在200~1200℃温度范围内,LCZ块材的热膨胀系数为10×10-6~12×10-6K-1,在1200℃的热导率约为0.75W/(m·K),比YSZ降低了50%以上,显示了优异的隔热性能。结论 YSZ的掺杂使LC中部分Zr4+取代了La3+,降低了晶格中的O空位浓度,原子的横向剪切运动被削弱,有效地抑制了LC在200~400℃温度区间热膨胀系数下降的现象。由于t-ZrO_2→m-ZrO_2的相变对微裂纹的愈合作用,10%YSZ掺杂使LC块材的断裂韧性得到有效提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号