排序方式: 共有62条查询结果,搜索用时 0 毫秒
11.
Emerging water contaminants derived from unleaded gasoline such as methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME), are in need of effective bioremediation technologies for restoring water resources. In order to design the conditions of a future groundwater bioremediating biofilter, this work assesses the potential use of Acinetobacter calcoaceticus M10, Rhodococcus ruber E10 and Gordonia amicalis T3 for the removal of MTBE, ETBE and TAME in consortia or as individual strains. Biofilm formation on an inert polyethylene support material was assessed with scanning electron microscopy, and consortia were also analysed with fluorescent in situ hybridisation to examine the relation between the strains. A. calcoaceticus M10 was the best coloniser, followed by G. amicalis T3, however, biofilm formation of pair consortia favoured consortium M10-E10 both in formation and activity. However, degradation batch studies determined that neither consortium exhibited higher degradation than individual strain degradation. The physiological state of the three strains was also determined through flow cytometry using propidium iodide and 3′-dihexylocarbocyanine iodide thus gathering information on their viability and activity with the three oxygenates since previous microbial counts revealed slow growth. Strain E10 was observed to have the highest physiological activity in the presence of MTBE, and strain M10 activity with TAME was only maintained for 24 h, thus we believe that biotransformation of MTBE occurs within the active periods established by the cytometry analyses. Viable cell counts and oxygenate removal were determined in the presence of the metabolites tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA), resulting in TBA biotransformation by M10 and E10, and TAA by M10. Our results show that A. calcoaceticus M10 and the consortium M10-E10 could be adequate inocula in MTBE and TAME bioremediating technologies. 相似文献
12.
甲基叔丁基醚(MTBE)是北美燃料市场最常用的汽油添加剂,由于在土壤中的不吸附性和极高的水溶性.MT-BE已成为一种蔓延性的地下水污染物.植物修复技术被认为是目前对MTBE污染治理最为有效的方法之一.蒸腾流浓度因子(TSCF)作为植物修复技术中十分重要的参数,其通常是用污染物的辛醇-水分配系数(Kow)直接评估的。由于不同植物其体内脂肪含量不同,所以如果仅用污染物的Kow值来计算其TSCF值,往往不能准确表达污染物在植物体内的传输行为.由于MTBE在植物体内不发生降解,植物挥发是MTBE植物修复技术中唯一的作用机理.本实验用一自行设计的植物反应器来测定MTBE在不同温度条件下的TSCF值.长出新根须和嫩叶的柳树(Salix alba)枝条在一容积500mL的植物反应器中生长9-12d(其中MTBE溶液500mL,浓度4.81-6.60mg/L)来观察柳树对MTBE的吸收。MTBE的去除率和柳树的蒸腾量之间的关系用来计算其TSCF值.在15℃,20℃和25℃条件下,MTBE的TSCF值分别为0.58,0.75和0.49.本实验结果表明,柳树对MTBE的吸收是一个被动的行为,并且MTBE在柳树体内随蒸腾流的传输也有一定的限度。图2表1参11。 相似文献
13.
Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface 总被引:16,自引:0,他引:16
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation. 相似文献
14.
15.
Methyl ten-butyl ether (MTBE), a gasoline additive, possesses serious problems to the environmental health. In the present study, a bacterial culture named A-3 which could effectively degrade MTBE was isolated from the MTBE contaminated soil. The isolate was identified as Chryseobacterium sp., a new species capable of degrading MTBE. In order to enhance its degradation ability, selected environment factors were investigated. The results showed that the optimal temperature was in the range of 25-30℃, the pH was 7.0, the inoculum size was 2 × 10^8 CFU/ml and the optimal concentration of MTBE was from 50 to 100 mg/L. The maximum MTBE utilization rate (Vmax) was 102 nmol MTBE/(mg cell protein.h). Furthermore, it was found that the isolate could also degrade tert-butyl alcohol (TBA). The degradation rates of TBA were much faster than those of MTBE. The additional TBA would lead to the decrease of the initial MTBE degradation rate and the inhibitory effect of TBA increased with the increase of TBA concentration. Similar protein profiles at least seven peptides were demonstrated after SDS-PAGE analysis of crude extracts obtained from the cells growing in MTBE and TBA culture. 相似文献
16.
17.
A method was developed to determine the concentration of methyl tert-butyl ether(MTBE) in gasoline,diesel and heating oil by gas chromatography(GC) with mass spectrometry(GC-MS) or flame ionization detection(FID). The diluted gasoline was directly injected into the GC, and the complete separation of MTBE from co-eluting hydrocarbons was not required. GC/MS or GC/FID method can be used to analyze MTBE in different concentration range and have good consistency. 相似文献
18.
19.
在pH值7.2~8.5、温度25℃、DO≥5 mg/L的条件下,用含有甲基叔丁基醚(MTBE)的模拟废水对Methylibium petroleiphilum PM1进行富集培养并在陶粒表面挂膜,进而对其特性、性能等进行了研究。填料表面生物膜MTBE降解的序批实验和电镜照片分析均表明陶粒表面已成功附着PM1高效降解菌形成的生物膜。在挂膜后期,当起始MTBE浓度为100~110 mg/L时,经过24 h,MTBE的去除率达到65%以上并基本稳定,其中挥发占4.6%,生物降解起主导的作用。 相似文献
20.
Pamela R. D. Williams 《Environmental Forensics》2014,15(1):97-119
Potential threats to drinking water and water quality continue to be a major concern in many regions of the United States. New Jersey, in particular, has been at the forefront of assessing and managing potential contamination of its drinking water supplies from hazardous substances. The purpose of the current analysis is to provide an up-to-date evaluation of the occurrence and detected concentrations of methyl tertiary butyl ether (MTBE) and several other volatile organic compounds (VOCs) in public water systems, private wells, and ambient groundwater wells in New Jersey based on the best available data, and to put these results into context with federal and state regulatory and human-health benchmarks. Analyses are based on the following three databases that contain water quality monitoring data for New Jersey: Safe Drinking Water Information System (SDWIS), Private Well Testing Act (PWTA), and National Water Information System (NWIS). For public water systems served by groundwater in New Jersey, MTBE was detected at a concentration ≥10 μg/L, ≥20 μg/L, and ≥70 μg/L at least once in 30 (2%), 21 (1.4%), and five (0.3%) of sampled systems from 1997 to 2011, respectively. For private wells in New Jersey, MTBE was detected at a concentration ≥10 μg/L, ≥20 μg/L, and ≥70 μg/L at least once in 385 (0.5%), 183 (0.2%), and 46 (0.05%) of sampled wells from 2001 to 2011, respectively. For ambient groundwater wells in New Jersey, MTBE was detected at a concentration ≥10 μg/L, ≥20 μg/L, and ≥70 μg/L at least once in 14 (2.1%), 9 (1.3%), and 4 (0.6%) of sampled wells from 1993 to 2012, respectively. Average detected concentrations of MTBE, as well as detected concentrations at upper-end percentiles, were less than corresponding benchmarks for all three datasets. The available data show that MTBE is rarely detected in various source waters in New Jersey at a concentration that exceeds the State's health-based drinking water standard or other published benchmarks, and there is no evidence of an increasing trend in the detection frequency of MTBE. Other VOCs, such as tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene, are detected more often above corresponding regulatory or human-health benchmarks due to their higher detected concentrations in water and/or greater toxicity values. The current analysis provides useful data for evaluating the nature and extent of historical and current contamination of water supplies in New Jersey and potential opportunities for public exposures and health risks due to MTBE and other VOCs on a statewide basis. Additional forensic or forecasting analyses are required to identify the sources or timing of releases of individual contaminants at specific locations or to predict potential future water contamination in New Jersey. 相似文献