首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   781篇
  免费   68篇
  国内免费   35篇
安全科学   19篇
废物处理   8篇
环保管理   205篇
综合类   155篇
基础理论   367篇
污染及防治   15篇
评价与监测   45篇
社会与环境   50篇
灾害及防治   20篇
  2024年   3篇
  2023年   28篇
  2022年   20篇
  2021年   25篇
  2020年   26篇
  2019年   25篇
  2018年   17篇
  2017年   29篇
  2016年   27篇
  2015年   41篇
  2014年   22篇
  2013年   45篇
  2012年   22篇
  2011年   38篇
  2010年   38篇
  2009年   50篇
  2008年   50篇
  2007年   54篇
  2006年   46篇
  2005年   38篇
  2004年   29篇
  2003年   31篇
  2002年   29篇
  2001年   18篇
  2000年   20篇
  1999年   12篇
  1998年   10篇
  1997年   11篇
  1996年   10篇
  1995年   9篇
  1994年   10篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有884条查询结果,搜索用时 15 毫秒
131.
Accurate delineation and characterization of valley-bottom settings is crucial to the assessment of the biological and geomorphological components of riverine systems; yet, to date, most valley-bottom mapping endeavors have been done manually. To improve this situation, we developed automated techniques in a Geographic Information System (GIS) for delineating and characterizing valley-bottom settings in river basins ranging in size from approximately 1,000–10,000 km2. All procedures were developed with ARC/INFO GIS software and fully automated in Arc Macro Language (AML). The GRID module is required for valley-bottom delineation and slope calculations; whereas characterization (i.e., measuring the width of the valley-bottom zone) requires Coordinate Geometry (COGO) in the ARCEDIT module. The process requires three inputs: a polygon coverage of the analysis area; an arc coverage of its hydrography, and a grid representing its digital elevation. The AML is designed to operate within a wide range of computer memory/disk space options, and it allows users to customize several procedures to match the scale and complexity of a given analysis area with available computer hardware.  相似文献   
132.
Forest area figures, at a given point in time and for a given region of interest, differ considerably, affecting the calculation of deforestation rates and thus confuse the political and scientific discussion on the state and change of the resource forest. This article discusses the variation of published forest cover figures, using Costa Rica as an example. A list of published figures on the forest cover of Costa Rica from 1940 onwards is analyzed. Reasons for the differences are hypothesized and discussed. These differences are mainly in the definition of forest and forest classes included, in the type of the studies conducted (mapping and/or sampling), in the precision of the estimates, and in the information sources used. It is concluded that part of the problem is inherent in the nature of the resource `forest'. Quality and completeness of the presentation of the forest cover estimates are a clue to their correct understanding and interpretation. The latter point being especially relevant, as forest cover data have both a technical-scientific and a political meaning and are used as relevant arguments in many discussions. In the example of Costa Rica, a general downward trend is observed up to about 1985/1990, whereas after that forest area figures are on the average at a markedly higher level. Some hypotheses for this change in the trend are discussed.  相似文献   
133.
A comprehensive environmental assessment (EA) is a pre-requisite before the site for developing a hazardous waste treatment and disposal facility (HWTDF) is selected. However, the resource limitations, especially for developing countries, often dictatethat the detailed EA be restricted to those sites, which are constraint free and have low hazard potentials. Thus, a preliminary screening exercise for assessing the suitability ofsite for developing the HWTDF needs to be carried out to avoid huge costs involved in detailed EA. While screening a HWTDF site,various factors such as present land use, ecologically sensitiveareas, geology and hydrogeology of the area, the quality and quantity of wastes, engineered safeguards, and the operationalprocedures that need to be adopted, are required to be addressed. In this paper, a multi-level screening criteria employing RemoteSensing, Constraint Mapping, Groundwater Pollution Potential Index (DRASTIC Index), and the Site Ranking was used to assess the suitability of a proposed site for the development of HWTDF.The study helped to identify various constraints at the proposedsite and their significance on the development of the HWTDF.  相似文献   
134.
The increasing use of the landscape by humans has led to important diminutions of natural surfaces. The remaining patches of wild habitat are small and isolated from each other among a matrix of inhospitable land-uses. This habitat fragmentation, by disabling population movements and stopping their spread to new habitats, is a major threat to the survival of numerous plant and animal species. We developed a general model, adaptable for specific species, capable of identifying suitable habitat patches within fragmented landscapes and investigating the capacity of populations to move between these patches. This approach combines GIS analysis of a landscape, with spatial dynamic modeling. Suitable habitat is identified using a threshold area to perimeter ratio. Potential movement pathways of species between habitat patches are modeled using a cellular automaton. Habitat connectivity is estimated by overlaying habitat patches with movement pathways. The maximum potential population is calculated within and between connected habitat patches and potential risk of inbreeding within meta-populations is considered. The model was tested on a sample map and applied to scenario maps of predicted land-use change in the Peoria Tri-county region (IL). It (1) showed area of natural area alone was insufficient to estimate the consequences on animal populations; (2) underscored the necessity to use approaches investigating the effect of land-use change spatially through the landscape and the importance of considering species-specific life history characteristics; and (3) highlighted the model's potential utility as an indicator of species likelihood to be affected negatively by land-use scenarios and therefore requiring detailed investigation.  相似文献   
135.
Conservation decisions are invariably made with incomplete data on species’ distributions, habitats, and threats, but frameworks for allocating conservation investments rarely account for missing data. We examined how explicit consideration of missing data can boost return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel way of integrating the presence of unmapped barriers into a barrier optimization model was developed and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat gain than was anticipated using a conventional barrier optimization approach. Explicitly acknowledging that data are incomplete during project selection, however, boosted expected habitat gains by 20–273% on average, depending on the true number of unmapped barriers. Importantly, these gains occurred without additional data. Simply acknowledging that some barriers were unmapped, regardless of their precise number and location, improved conservation outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of accounting for data shortcomings during project selection.  相似文献   
136.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   
137.
Land use/land cover (LULC) change affects the provision of ecosystem services for humans and habitat for wildlife. Hence, it is crucial to monitor LULC particularly adjacent to protected areas. In this study, we measured LULC change in Rombo, Tanzania, an area with high-potential agro-ecological zones that is dominated by human–elephant conflicts (HECs). We used remote sensing and geographical information system techniques, questionnaires and village meetings to assess spatio-temporal patterns of the LULC changes in the study area. Using Landsat imagery, digital elevation model (DEM) and ground truthing, we classified and monitored changes in LULC from the years 1987 to 2015. We found that within Rombo, settlements were increasing, while agricultural and agroforestry lands were decreasing and respondents’ perceptions varied along the altitudinal gradient. Patterns of HEC and LULC were observed to change along the gradient and the later threatened the agricultural land and ecological integrity for elephant habitat, leading to high tension and competition between elephants and people. This research offers baseline information for land use planning to balance wildlife conservation with livelihood development in Rombo and highlights that managing the impacts of LULC changes on HEC and elephant habitat loss is a matter of urgency.  相似文献   
138.
于2014年10月至2015年1月采用样线调查法对黄河三角洲自然保护区秋季迁徙期和越冬期水鸟群落结构进行调查研究,调查共包括8条样线40个观测点.结果表明:(1)秋季迁徙期共记录水鸟6目14科54种,国家Ⅰ级保护鸟类5种,国家Ⅱ级保护鸟类8种;越冬期共记录水鸟5目7科31种,国家Ⅰ级保护鸟类1种,国家Ⅱ级保护鸟类4种.(2)2个时期雁形目水鸟种类和数量均占优势,豆雁(Anser fabalis)、斑嘴鸭(Anas poecilorhycha)、赤膀鸭(Anas strepera)和绿头鸭(Anas platyrhynchos)为优势物种,丹顶鹤(Grus japonensis)、东方白鹳(Ciconia boyciana)和大大鹅(Cygnus cygnus)等珍稀水鸟也有一定的种群数量.(3)秋季迁徙期水鸟种数、数量和ShannonWiener多样性指数多于或高于越冬期.(4)5种典型生境之间水鸟种类和数量存在差异,天然水域是水鸟群落的主要分布区.(5)自然生境内的水鸟种数、数量和Shannon-Wiener多样性指数一般多于或高于人工生境.相似性分析结果表明,自然生境之间水鸟群落结构相似程度高于人工生境.  相似文献   
139.
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species’ biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change‐threatened species on the IUCN Red List concur with those of climate change‐threatened species identified with the trait‐based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change‐threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait‐based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change‐vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population‐level threats).  相似文献   
140.
Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human‐induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号