首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1544篇
  免费   133篇
  国内免费   134篇
安全科学   202篇
废物处理   30篇
环保管理   744篇
综合类   283篇
基础理论   272篇
污染及防治   135篇
评价与监测   81篇
社会与环境   37篇
灾害及防治   27篇
  2023年   22篇
  2022年   24篇
  2021年   40篇
  2020年   47篇
  2019年   45篇
  2018年   28篇
  2017年   50篇
  2016年   60篇
  2015年   67篇
  2014年   65篇
  2013年   77篇
  2012年   60篇
  2011年   94篇
  2010年   53篇
  2009年   121篇
  2008年   80篇
  2007年   74篇
  2006年   59篇
  2005年   76篇
  2004年   55篇
  2003年   68篇
  2002年   59篇
  2001年   49篇
  2000年   59篇
  1999年   51篇
  1998年   42篇
  1997年   25篇
  1996年   37篇
  1995年   24篇
  1994年   19篇
  1993年   17篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有1811条查询结果,搜索用时 15 毫秒
231.
We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree–grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation.  相似文献   
232.
We evaluated the Danish AirGIS air quality and exposure model system using air quality measurement data from New York City in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Measurements were used from three US EPA Air Quality System (AQS) monitoring stations and a comprehensive MESA Air measurement campaign including about 150 different locations and about 650 samples of about 2 week measurements of NOx, NO2 and PM2.5. AirGIS is a deterministic exposure model system based on the dispersion models Operational Street Pollution Model (OSPM) and the Urban Background Model (UBM). The UBM model reproduced the annual levels within 1–26% depending on station and pollutant at the three urban background EPA monitor stations, and generally reproduced well the seasonal and diurnal variation. The full model with OSPM and UBM reproduced the MESA Air measurements with a correlation coefficient of r2 = 0.51 for NOx, r2 = 0.28 for NO2 and r2 = 0.73 for PM2.5.  相似文献   
233.
随机模拟在常州运河水质规划中的应用   总被引:1,自引:0,他引:1  
以常州运河的水质规划为实例,讨论了确定性水质模型的随机模拟。讨论中引进了主观概率和客观概率的概念,用泰勒级数确定客观概率分布,用可能最大机率法估计主观概率分布,并给出了在实施不同规划方案时的水质概率曲线和水质达标的保证率。计算结果表明,使水质恶化的各种随机因素的作用不容忽视,各种水污染治理措施只能降低水质超标的风险水平。  相似文献   
234.
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   
235.
Accurate spatial representation of climatic patterns is often a challenge in modeling biophysical processes at the watershed scale, especially where the representation of a spatial gradient in rainfall is not sufficiently captured by the number of weather stations. The spatial rainfall generator (SRGEN) is developed as an extension of the “weather generator” (WXGEN), a component of the Agricultural Policy/Environmental eXtender (APEX) model. SRGEN generates spatially distributed daily rainfall using monthly weather statistics available at multiple locations in a watershed. The spatial rainfall generator as incorporated in APEX is tested on the Cowhouse watershed (1,178 km2) in central Texas. The watershed presented a significant spatial rainfall gradient of 2.9 mm/km in the lateral (north‐south) directions based on four rainfall gages. A comparative analysis between SRGEN and WXGEN indicates that SRGEN performs well (PBIAS = 2.40%). Good results were obtained from APEX for streamflow (NSE = 0.99, PBIAS = 8.34%) and NO3‐N and soluble P loads (PBIAS ≈ 6.00% for each, respectively). However, APEX underpredicted sediment yield and organic N and P loads (PBIAS: 24.75‐27.90%) with SRGEN, although its uncertainty in output was lower than WXGEN results (PBIAS: ?13.02 to ?46.13%). The overall improvement achieved in rainfall generation by SRGEN is demonstrated to be effective in the improving model performance on flow and water quality output.  相似文献   
236.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   
237.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   
238.
239.
Incidental release of toxic chemicals can pose extreme danger to life in the vicinity. Therefore, it is crucial for emergency responders, plant operators, and safety professionals to have a fast and accurate prediction to evaluate possible toxic dispersion life-threatening consequences. In this work, a toxic chemical dispersion casualty database that contains 450 leak scenarios of 18 toxic chemicals is constructed to develop a machine learning based quantitative property-consequence relationship (QPCR) model to estimate the affected area caused by toxic chemical release within a certain death rate. The results show that the developed QPCR model can predict the toxic dispersion casualty range with root mean square error of maximum distance, minimum distance, and maximum width less than 0.2, 0.4, and 0.3, which indicates that the constructed model has satisfying accuracy in predicting toxic dispersion ranges under different lethal consequences. The model can be further expanded to accommodate more toxic chemicals and leaking scenarios.  相似文献   
240.
Breakthrough curves, on a semi-log scale, from tests in porous media with block-input of viruses, bacteria, protozoa and colloidal particles often exhibit a typical skewness: a rather slowly rising limb and a smooth transition of a declining limb to a very long tail. One-site kinetic models fail to fit the rising and declining limbs together with the tail satisfactorily. Inclusion of an equilibrium adsorption site does not seem to improve simulation results. This was encountered in the simulation of breakthrough curves from a recent field study on the removal of bacteriophages MS2 and PRD1 by passage through dune sand. In the present study, results of laboratory experiments for the study of this issue are presented. Breakthrough curves of salt and bacteriophages MS2, PRDI, and phiX174 in 1 D column experiments have been measured. One- and two-site kinetic models have been applied to fit and predict breakthrough curves from column experiments. The two-site model fitted all breakthrough curves very satisfactorily, accounting for the skewness of the rising limb as well as for the smooth transition of the declining limb to the tail of the breakthrough curve. The one-site model does not follow the curvature of the breakthrough tail, leading to an overestimation of the inactivation rate coefficient for attached viruses. Interaction with kinetic site 1 is characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 is fast. Inactivation of viruses and interaction with kinetic site 2 provide only a minor contribution to removal. Virus removal is mainly determined by the attachment to site 1. Bacteriophage phiX174 attached more than MS2 and PRD1, which can be explained by the greater electrostatic repulsion that MS2 and PRD1 experience compared to the less negatively charged phiX174.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号