首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   4篇
  国内免费   55篇
安全科学   17篇
废物处理   11篇
环保管理   31篇
综合类   182篇
基础理论   48篇
污染及防治   132篇
评价与监测   27篇
社会与环境   6篇
  2023年   5篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   13篇
  2018年   7篇
  2017年   13篇
  2016年   28篇
  2015年   19篇
  2014年   14篇
  2013年   32篇
  2012年   25篇
  2011年   48篇
  2010年   23篇
  2009年   28篇
  2008年   44篇
  2007年   26篇
  2006年   17篇
  2005年   5篇
  2004年   12篇
  2003年   16篇
  2002年   5篇
  2001年   7篇
  2000年   9篇
  1999年   3篇
  1998年   1篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有454条查询结果,搜索用时 515 毫秒
31.
The interactions between metals (Ca2+ and Hg2+) and extracellular polymeric substances (EPS) extracted from the aerobic and anaerobic sludge in wastewater treatment reactors were investigated using a combination of zeta potential measurement and 3-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy with parallel factor (PARAFAC) analysis. Results show that Ca2+ had no substantial effects on the EEM fluorescence spectra of the EPS, but their zeta potentials increased with the increasing Ca2+ dosage. However, Hg2+ had a significant effect on the EEM fluorescence spectra of the EPS, while their zeta potentials seemed not to be affected by the dose of Hg2+. The interactions between Hg2+ and EPS were elucidated using the fluorescence quenching with PARAFAC analysis, while the interactions between Ca2+ and EPS were evaluated by the zeta potential technique. The binding constants for Hg2+ and EPS were two orders of magnitude higher than those for Ca2+ and EPS, suggesting that the binding mechanisms between Ca2+ and EPS were different from those between Hg2+ and EPS. The results might be useful for understanding the roles of EPS in bacterial self-protection against heavy metals and the aggregate formation mechanisms through ionic bridging interactions.  相似文献   
32.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   
33.
Surface sediments of the lagoons of Lomé, Togo, were analyzed for mercury, methylmercury, and trace elements. Concentrations were greater than typical for natural lagoon sediments, and with greater variability within the Eastern lagoon compared to the Western one. The Eastern lagoon is larger and has been dredged in the past, while the Western lagoon, which also receives major waste inputs, has not been dredged and shows less tidal flushing. Accordingly, one naturally believes that the Eastern lagoon is cleaner and probably safe to use due to its natural resources, including fishes to eat. Unexpectedly, we describe here that mercury methylation was greater in the Eastern lagoon, indicating increased bioavailability of mercury, as probably facilitated by past dredging that decreased solid-phase retention of inorganic mercury. Urbanization has historically been more developed in the southern part of the lagoons, which is still reflected in contamination levels of sediment despite dredging, probably because sources of contamination are still more important there today. Such urban contamination emphasizes the need to regulate waste discharges and possible airborne contamination in growing cities of developing countries, and implements environmental and public health monitoring, especially in relation to misbelieves systematically associated with the cleansing effect of dredging activity.  相似文献   
34.
Anjum R  Grohmann E  Malik A 《Chemosphere》2011,84(1):175-181
A total of 35 bacteria from contaminated soil (cultivated fields) near pesticide industry from Chinhat, Lucknow, (India) were isolated and tested for their tolerance/resistance to pesticides, heavy metals and antibiotics. Bacterial isolates were identified by 16S rDNA sequencing. Gas Chromatography analysis of the soil samples revealed the presence of lindane at a concentration of 547 ng g−1 and α-endosulfan and β-endosulfan of 422 ng g−1 and 421 ng g−1 respectively. Atomic Absorption Spectrophotometry analysis of the test sample was done and Cr, Zn, Ni, Fe, Cu and Cd were detected at concentrations of 36.2, 42.5, 43.2, 241, 13.3 and 11.20 mg kg−1 respectively. Minimum inhibitory concentrations of all the isolates were determined for pesticides and heavy metals. All the multi-resistant/tolerant bacterial isolates were also tested for the presence of incompatibility (Inc) group IncP, IncN, IncW, IncQ plasmids and for rolling circle plasmids of the pMV158-family by PCR. Total community DNA was extracted from pesticide contaminated soil. PCR amplification of the bacterial isolates and soil DNA revealed the presence of IncP-specific sequences (trfA2 and oriT) which was confirmed by dot blot hybridization with RP4-derived DIG-labelled probes. Plasmids belonging to IncN, IncW and IncQ group were neither detected in the bacterial isolates nor in total soil DNA. The presence of conjugative or mobilizable IncP plasmids in the isolates indicate that these bacteria have gene transfer capacity with implications for dissemination of heavy metal and antibiotic resistance genes. We propose that IncP plasmids are mainly responsible for the spread of multi-resistant bacteria in the contaminated soils.  相似文献   
35.
Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant−1. MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant−1 in the control, to 1.3 mg plant−1 in the 6 and 10 mmol plant−1 treatments. With 10 mmol plant−1 rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils.  相似文献   
36.
The aim of this study was to determine and quantify effects of copper and lithium in tissues of early juveniles of the ramshorn snail, Marisa cornuarietis. For this purpose, hatchlings of M. cornuarietis were exposed for 7 days to a range of five different sublethal concentrations of copper (5, 10, 25, 50, and 75 μg Cu2+ L−1) and lithium (50, 100, 200, 1000, and 5000 μg Li+ L−1). Both metals changed the tissue structure of epidermis, hepatopancreas, and gills, varying between slight and strong reactions, depending on the copper and lithium concentration. The histopathological changes included alterations in epithelial and mucous cells of the epidermis, swelling of hepatopancreatic digestive cells, alterations in the number of basophilic cells, abnormal apices of digestive cells, irregularly shaped cilia and changes in the amount of mucus in the gills. The most sensible organ in M. cornuarietis indicating Cu or Li pollution is the hepatopancreas (LOECs were 10 μg Cu2+ L−1, or 200 μg Li+ L−1). In epidermis, mantle and gills relevant effects occurred with higher LOECs (50 μg Cu2+ L−1, or 1000 μg Li+ L−1). Base on LOECs, our results indicated that histopathological endpoints are high sensitivity to copper and lithium compared to endpoints for embryonic developmental toxicity.  相似文献   
37.
Ju YR  Chen WY  Singh S  Liao CM 《Chemosphere》2011,85(6):1048-1056
The purpose of this paper was to examine trade-offs between elimination and detoxification in rainbow trout and three common bivalve molluscs (clam, oyster, and scallop) exposed to cadmium (Cd), copper (Cu), and zinc (Zn) based on recent reported experimental data. We incorporated metal influx threshold with subcellular partitioning to estimate rate constants of detoxification (kd) and elimination (k2). We found that the relationships between k2 and kd were negative for rainbow trout and positive for bivalve molluscs. However, the relationships between kd and % metal in metabolically detoxified pool were found positive for rainbow trout and negative for bivalve molluscs. Our results also indicated that rainbow trout had higher accumulation (∼60-90%) in metabolically active pool when exposed to essential metals of Cu and Zn and had only 10-50% accumulation in response to non-essential metal of Cd. Based on a cluster analysis, this study indicated that similarity of physiological regulations among study species was found between Cd and Zn. Our study suggested that detoxification can be predicted by an elimination-detoxification scheme with the known elimination rate constant. We concluded that quantification of trade-offs between subcellular partitioning and detoxification provides valuable insights into the ecotoxicology of aquatic organisms and enhances our understanding of the subcellular biology of trace metals.  相似文献   
38.
The oxidation and acidification of sulfidic soil materials results in the re-partitioning of metals, generally to more mobile forms. In this study, we examine the partitioning of Fe, Cr, Cu, Mn, Ni and Zn in the acidified surface soil (0-0.1 m) and the unoxidised sub-soil materials (1.3-1.5 m) of an acid sulfate soil landscape. Metal partitioning at this acidic site was then compared to an adjacent site that was previously acidified, but has since been remediated by tidal re-inundation. Differences in metal partitioning were determined using an optimised six-step sequential extraction procedure which targets the “labile”, “acid-soluble”, “organic”, “crystalline oxide”, “pyritic” and “residual” fractions. The surficial soil materials of the acidic site had experienced considerable losses of Cr, Cu, Mn and Ni compared to the underlying parent material due to oxidation and acidification, yet only minor losses of Fe and Zn. In general, the metals most depleted from the acidified surface soil materials exhibited the greatest sequestration in the surface soil materials of the tidally remediated site. An exception to this was iron, which accumulated to highly elevated concentrations in the surficial soil materials of the tidally remediated site. The “acid-soluble”, “organic” and “pyritic” fractions displayed the greatest increase in metals following tidal remediation. This study demonstrates that prolonged tidal re-inundation of severely acidified acid sulfate soil landscapes leads to the immobilisation of trace metals through the surficial accumulation of iron oxides, organic material and pyrite.  相似文献   
39.
40.
The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells’ periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号