首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   4篇
  国内免费   71篇
安全科学   18篇
废物处理   11篇
环保管理   33篇
综合类   202篇
基础理论   55篇
污染及防治   144篇
评价与监测   29篇
社会与环境   6篇
  2023年   5篇
  2022年   5篇
  2021年   17篇
  2020年   5篇
  2019年   10篇
  2018年   7篇
  2017年   11篇
  2016年   28篇
  2015年   18篇
  2014年   16篇
  2013年   32篇
  2012年   25篇
  2011年   54篇
  2010年   29篇
  2009年   35篇
  2008年   49篇
  2007年   28篇
  2006年   20篇
  2005年   8篇
  2004年   12篇
  2003年   21篇
  2002年   6篇
  2001年   10篇
  2000年   11篇
  1999年   4篇
  1998年   2篇
  1997年   9篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
排序方式: 共有498条查询结果,搜索用时 421 毫秒
31.
Hyperaccumulators are grown in contaminated soil and water in order that contaminants are taken up and accumulated. Transport of metals from soil to plant is initially dependent on the solubility and mobility of metals in soil solution which is controlled by soil and metal properties and plant physiology. Complexation with organic and inorganic ligands may increase mobility and availability of metals for plants. In this work the influence of desferrioxamine-B (DFO-B), which naturally is produced in the rhizosphere, and zeolite on Cd accumulation in root and shoot of Thlaspi caerulescens (Cd hyperaccumulator) was investigated. Plants were grown in pots with clean quartz sand, amended with 1% zeolite; treatment solutions included 0, 10, and 100 μM Cd and 70 μM DFO-B. Addition of zeolite to the quartz sand significantly reduced Cd concentration in plant tissues and translocation from root to shoot. On contrary, DFO-B considerably enhanced Cd sorption by roots and translocation to aerial part of plants. Treating the plants with zeolite and DFO-B together at 10 μM Cd resulted in reduction of the bioaccumulation factor but enhancement of Cd translocation from root to shoot at the rate of 13%. In contrast, at 100 μM Cd in the solution both bioaccumulation and translocation factors decreased. Total metal accumulation as a key factor for evaluating the efficiency of phytoremediation was highly influenced by treatments. Presence of zeolite in pots significantly decreased total Cd accumulation by plants, whereas, DFO-B clearly enhanced it.  相似文献   
32.
Hojaji E 《Chemosphere》2012,89(3):319-326
The binding behavior of lignin for Pb, Cu, Co, Mn, Cd and Ni was studied using the diffusive gradients in thin films technique (DGT). Samplers with different structures of diffusive gel were used in the well-stirred systems containing known concentrations of metals along with (a) 10, 20 and 40 μM lignin and; (b) 0.64 and 6.47 μM Suwannee river fulvic acid + 40 μM lignin at an ionic strength of 0.01 M (NaNO3) and pH = 7. Diffusion coefficients of lignin complexes in acrylamide gels were estimated and found to be less than 5% of the equivalent coefficients for the uncomplexed metal ions. These values were used to calculate concentrations of labile metals from DGT measurements in solutions, where lignin could discriminate metals in the order of Pb+2 > Cu+2 > Cd+2 > Ni+2 > Co+2 > Mn+2. Stability constants (Log K) were calculated using Visual MINTEQ II and WHAM V software. The K values were compared with the stability constants from titration of Pb and Cd with 10 μM lignin aqueous samples and with those of humic substances in natural waters. The constants obtained from measurement of complexing capacities might bias the real corresponding values unless two line regression analyses on titration data are considered. The DGT study of fractionation of metal species at varying ratios indicated that the proportion of organic complexes decreased with increasing ratios and gradually more metals were exchanged with inorganic phases. Speciation of Pb and Cd is affected by the concentrations of FA, Cd is dominantly bound with FA while Pb is evenly partitioned between the ligands. The comprehensive knowledge of metal-lignin complexes sheds some light on in situ operational speciation information that can be achieved by DGT.  相似文献   
33.
Convenient to apply and available on the Internet software CORAL (http://www.insilico.eu/CORAL) has been used to build up quantitative structure-activity relationships (QSAR) for prediction of cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of concentration for 50% effect pEC50). In this study six random splits of the data into the training and test set were examined. It has been shown that the CORAL provides a reliable tool that could be used to build up a QSAR of the pEC50.  相似文献   
34.
Ecotoxicity of nanoparticles of CuO and ZnO in natural water   总被引:1,自引:0,他引:1  
The acute toxicity of CuO and ZnO nanoparticles in artificial freshwater (AFW) and in natural waters to crustaceans Daphnia magna and Thamnocephalus platyurus and protozoan Tetrahymena thermophila was compared. The L(E)C50 values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l and were about 10-fold lower than L(E)C50 values of bulk CuO. In all test media, the L(E)C50 values for both bulk and nanoZnO (1.1-16 mg Zn/l) were considerably lower than those of nanoCuO. The natural waters remarkably (up to 140-fold) decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC). The toxicity of both nanoCuO and nanoZnO was mostly due to the solubilised ions as determined by specific metal-sensing bacteria.  相似文献   
35.
Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root.  相似文献   
36.
The interactions between metals (Ca2+ and Hg2+) and extracellular polymeric substances (EPS) extracted from the aerobic and anaerobic sludge in wastewater treatment reactors were investigated using a combination of zeta potential measurement and 3-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy with parallel factor (PARAFAC) analysis. Results show that Ca2+ had no substantial effects on the EEM fluorescence spectra of the EPS, but their zeta potentials increased with the increasing Ca2+ dosage. However, Hg2+ had a significant effect on the EEM fluorescence spectra of the EPS, while their zeta potentials seemed not to be affected by the dose of Hg2+. The interactions between Hg2+ and EPS were elucidated using the fluorescence quenching with PARAFAC analysis, while the interactions between Ca2+ and EPS were evaluated by the zeta potential technique. The binding constants for Hg2+ and EPS were two orders of magnitude higher than those for Ca2+ and EPS, suggesting that the binding mechanisms between Ca2+ and EPS were different from those between Hg2+ and EPS. The results might be useful for understanding the roles of EPS in bacterial self-protection against heavy metals and the aggregate formation mechanisms through ionic bridging interactions.  相似文献   
37.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   
38.
Surface sediments of the lagoons of Lomé, Togo, were analyzed for mercury, methylmercury, and trace elements. Concentrations were greater than typical for natural lagoon sediments, and with greater variability within the Eastern lagoon compared to the Western one. The Eastern lagoon is larger and has been dredged in the past, while the Western lagoon, which also receives major waste inputs, has not been dredged and shows less tidal flushing. Accordingly, one naturally believes that the Eastern lagoon is cleaner and probably safe to use due to its natural resources, including fishes to eat. Unexpectedly, we describe here that mercury methylation was greater in the Eastern lagoon, indicating increased bioavailability of mercury, as probably facilitated by past dredging that decreased solid-phase retention of inorganic mercury. Urbanization has historically been more developed in the southern part of the lagoons, which is still reflected in contamination levels of sediment despite dredging, probably because sources of contamination are still more important there today. Such urban contamination emphasizes the need to regulate waste discharges and possible airborne contamination in growing cities of developing countries, and implements environmental and public health monitoring, especially in relation to misbelieves systematically associated with the cleansing effect of dredging activity.  相似文献   
39.
Anjum R  Grohmann E  Malik A 《Chemosphere》2011,84(1):175-181
A total of 35 bacteria from contaminated soil (cultivated fields) near pesticide industry from Chinhat, Lucknow, (India) were isolated and tested for their tolerance/resistance to pesticides, heavy metals and antibiotics. Bacterial isolates were identified by 16S rDNA sequencing. Gas Chromatography analysis of the soil samples revealed the presence of lindane at a concentration of 547 ng g−1 and α-endosulfan and β-endosulfan of 422 ng g−1 and 421 ng g−1 respectively. Atomic Absorption Spectrophotometry analysis of the test sample was done and Cr, Zn, Ni, Fe, Cu and Cd were detected at concentrations of 36.2, 42.5, 43.2, 241, 13.3 and 11.20 mg kg−1 respectively. Minimum inhibitory concentrations of all the isolates were determined for pesticides and heavy metals. All the multi-resistant/tolerant bacterial isolates were also tested for the presence of incompatibility (Inc) group IncP, IncN, IncW, IncQ plasmids and for rolling circle plasmids of the pMV158-family by PCR. Total community DNA was extracted from pesticide contaminated soil. PCR amplification of the bacterial isolates and soil DNA revealed the presence of IncP-specific sequences (trfA2 and oriT) which was confirmed by dot blot hybridization with RP4-derived DIG-labelled probes. Plasmids belonging to IncN, IncW and IncQ group were neither detected in the bacterial isolates nor in total soil DNA. The presence of conjugative or mobilizable IncP plasmids in the isolates indicate that these bacteria have gene transfer capacity with implications for dissemination of heavy metal and antibiotic resistance genes. We propose that IncP plasmids are mainly responsible for the spread of multi-resistant bacteria in the contaminated soils.  相似文献   
40.
Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant−1. MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant−1 in the control, to 1.3 mg plant−1 in the 6 and 10 mmol plant−1 treatments. With 10 mmol plant−1 rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号