Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER. 相似文献
This overview summarises the present knowledge on major sources of pollution, which are of concern for the Mediterranean Sea. Eutrophication, red tides, organic loads, hydrocarbon spills, heavy metal contamination and their biological effects are described on the light of the ecological characteristics of the Mediterranean. In particular special attention is paid to the "new pollution" processes; i.e. , the introduction of novel substances with biological activity that might have synergetic effects with "classical pollutants". Different compartments and marine ecosystems are considered and compared. The degree of anthropogenic impact and its apparent trends are discussed. Possible monitoring plans and remedial actions for a sustainable management of coastal zones subjected to increasing pollution are also suggested. 相似文献
Activated sludges originated from wastewater treatment plants (WWTPs) play an important role in heavy metal removal from effluents. Extracellular polymers (ECP) form a major part of the activated sludge and are heavily involved in biosorption of heavy metals. The complexation of three heavy metals (Cd, Cu and Pb) with ECP extracted from six activated sludges, originated from different WWTPs, was investigated at pH 7.
ECP in the study were shown to be mainly composed of proteins, humic acids, uronic acids and polysaccharides along with smaller amounts of lipids and nucleic acids. IR spectra confirmed the presence of the functional groups usually found in the ECP and the content in each fraction was determined using colorimetric methods. The determination of surface charge was carried out on each ECP sample and allowed two pKa values characteristic of two distinctive functional groups to be determined. At the pH used in the study, the value of these constants indicates that only one functional group is under protonated form.
A polarographic method was used to determine the complexation parameters (number of binding sites and complexation constant) of ECP solutions towards metals. The following orders were established for the number of binding sites: Cu > Pb Cd and for the stability of the ECP–metal complex: Cd > Pb Cu.
A matrix of correlation between the composition of the polymers and the complexation parameters showed that the number of binding sites and the complexation constant were strongly linked to proteins, polysaccharides and humic substances content. 相似文献
The injection of bacteria in the subsurface has been identified as a potential method for in situ cleanup of contaminated aquifers. For high bacterial loadings, the presence of previously deposited bacteria can result in decreased deposition rates--a phenomenon known as blocking. Miscible displacement experiments were performed on short sand columns (approximately 5 cm) to determine how bacterial deposition on positively charged metal-oxyhydroxide-coated sands is affected by the presence of previously deposited bacteria. Approximately 8 pore volumes of a radiolabeled bacterial suspension at a concentration of approximately 1 x 10(9) cells ml-1 were introduced into the columns followed by a 2-pore-volume flush of cell-free buffer. It was found that the presence of Al- and Fe-coated sand increased both deposition rates and maximum fractional surface coverage of bacteria on the sediment surfaces. The effect of grain size on maximum bacterial retention capacity, however, was not significant. Decreasing ionic strength from 10(-1) to 10(-2) M KCl resulted in noticeable decreases in sticking efficiency (alpha) and maximum surface coverage (thetamax) for clean silica sand--results consistent with DLVO theory. In columns containing positively charged Al- and Fe-coated sands, however, changes in alpha and thetamax due to decreasing ionic strength were minimal. These findings demonstrate the importance of geochemical controls on the maximum bacterial retention capacity of sands. 相似文献
The study of Pb(II) binding to the system humic acid/goethite in acidic medium is reported in the present paper. From a macroscopic point of view, we have constructed the experimental sorption isotherms (using atomic absorption spectroscopy) and compared them with the prediction of the additivity rule. It is found that this system presents positive deviations, that is, the amount sorbed is about an order of magnitude higher than predicted. Apart from this, microscopic and structural aspects have also been studied using in situ and ex situ infrared spectroscopy. These results suggest that the presence of Pb(II) increases the amount of humic acid bound to the oxide. It is proposed that proton displacement due to the interaction between humic substances and the oxide, along with the formation of ternary complexes with the Pb(II) cation bridging the oxide and the humic substances (Type A complexes), cause the deviation from additivity. 相似文献