首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1128篇
  免费   108篇
  国内免费   584篇
安全科学   73篇
废物处理   55篇
环保管理   148篇
综合类   927篇
基础理论   322篇
环境理论   1篇
污染及防治   215篇
评价与监测   42篇
社会与环境   31篇
灾害及防治   6篇
  2024年   3篇
  2023年   22篇
  2022年   52篇
  2021年   49篇
  2020年   47篇
  2019年   76篇
  2018年   83篇
  2017年   71篇
  2016年   86篇
  2015年   86篇
  2014年   85篇
  2013年   135篇
  2012年   105篇
  2011年   94篇
  2010年   73篇
  2009年   95篇
  2008年   74篇
  2007年   74篇
  2006年   73篇
  2005年   51篇
  2004年   35篇
  2003年   65篇
  2002年   34篇
  2001年   52篇
  2000年   40篇
  1999年   21篇
  1998年   16篇
  1997年   16篇
  1996年   15篇
  1995年   13篇
  1994年   12篇
  1993年   17篇
  1992年   10篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1820条查询结果,搜索用时 31 毫秒
81.
Bisphenol A (BPA) is the monomer component of polycarbonate plastics and classified as an endocrine disrupting chemical (EDC). The reproductive toxicity of BPA has been extensively studied in mammals; however, relatively little information is available on the immunotoxic responses of fish to BPA. In this study, we investigated the effects of BPA on the immune functions of lymphocytes and macrophages in Carassius auratus. The effects of BPA were compared with those of two natural steroid hormones, estradiol and hydrocortisone. Proliferation of the two types of cells in response to PHA was measured using colorimetric MTT assay. Macrophage respiratory burst stimulated by Con A was measured using chemiluminescence assay. Results showed that BPA (0.054-5.4 mg/L), estradiol (0.0002-2.0 mg/L) and hydrocortisone (5-50 mg/L) significantly induced Carassius auratus lymphocyte proliferation while higher doses of hydrocortisone (500-5000 mg/L) appeared to be inhibitory. BPA (0.005-50 mg/L), estradiol (0.005-800 mg/L) and hydrocortisone (0.005-500 mg/L) markedly enhanced macrophage proliferation, whereas higher doses of BPA (500-1000 mg/L) appeared to inhibit cell proliferation. Furthermore, higher dosage of BPA (50 mg/L) and hydrocortisone (50 and 500 mg/L) suppressed the macrophages respiratory burst while estradiol is stimulative all the doses tested (0.05-500 mg/L). In conclusion, BPA could have immunotoxicity to Carassius auratus and functional changes of lymphocyte and macrophage in Carassius auratus may be different between low and high dosages.  相似文献   
82.
In order to understand the complex transport phenomena in a passive direct methanol fuel cell (DMFC), a theoretical model is essential. The analytical model provides a computationally efficient framework with a clear physical meaning. For this, a non-isothermal, analytical model for the passive DMFC has been developed in this study. The model considers the coupled heat and mass transport along with electrochemical reactions. The model is successfully validated with the experimental data. The model accurately describes the various species transport phenomena including methanol crossover and water crossover, heat transport phenomena, and efficiencies related to the passive DMFC. It suggests that the maximum real efficiency can be achieved by running the cell at low methanol feed concentration and moderate current density. The model also accurately predicts the effect of various operating and geometrical parameters on the cell performance such as methanol feed concentration, surrounding temperature, and polymer electrolyte membrane thickness. The model predictions are in accordance with the findings of the other researchers. The model is rapidly implementable and can be used in real-time simulation and control of the passive DMFC. This comprehensive model can be used for diagnostic purpose as well.  相似文献   
83.
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.  相似文献   
84.
Through a sensitivity analysis, the trade-off between vehicle range and CO2 emissions is investigated as a function of electric emissions coefficient. Various powertrains were analysed for use in a small crossover sport utility vehicle. Gasoline, gasoline electric hybrid, diesel, fuel cell and battery electric vehicles (BEVs) were considered. Using various upstream fuel pathways and a model for vehicle performance, emissions and energy use were estimated. The hydrogen fuel cell vehicle was found preferable to BEVs under conditions of high CO2 emissions per kW-hr and a high vehicle range requirement. The BEV was preferable for all other conditions.  相似文献   
85.
We need to ensure the sustainable management of advanced materials, such as purified silicon, that contribute to a low-carbon society. Because a drastic increase in the demand for photovoltaic (PV) systems is tightening the supply of silicon for PV cells, the sustainability of silicon feedstock needs to be explored. For this purpose, a material flow analysis of silicon in Japan from 1996 to 2006 is presented in this paper. Our analysis finds that rapid growth in demand for polycrystalline silicon (pc-silicon) and single crystalline silicon (sc-silicon) has changed the structure of the purified silicon supply. The strong demand for purified silicon for solar cells is responsible for this change. While off-grade silicon obtained as a by-product of electronic-grade silicon (EG-Si) covered the demand for solar sells before 2000, pc-silicon is currently produced independently for solar cells via an energy-intensive process. Analysis of the resource effective-use index (REI), which indicates how effectively purified silicon is used, shows progress in the effective use of pc- and sc-silicon. REI analysis indicates that the effective use of pc-silicon is reaching a maximum, while the effective use of sc-silicon is advancing, with a corresponding increase in price. To ensure a sustainable supply of silicon feedstock, this paper proposes four solutions: (1) production of solar-grade pc-silicon by a less costly and less energy-consuming method; (2) reduction in the amount of crystalline silicon per watt in solar cells; (3) acceleration of the development and deployment of other solar cell types; and (4) reuse and recycling of solar cells in the future.  相似文献   
86.
模拟了车用工况下燃料电池发动机脉冲式排氢的特点,设计开发了一套质子交换膜燃料电池的尾气净化系统,并以5 kW燃料电池的尾气排放为例,研究其净化效果。研究了电池阳极排放氢气缓冲前后尾气中氢气浓度的变化,以及不同空速条件下氢气的去除效果。结果表明:电堆阳极排放氢气经过缓冲处理后,尾气中氢气浓度趋于平稳,大部分工况下处在2%以下,达到了安全处理的要求;尾气中氢气的去除效果与空速密切相关。对自制的整体式催化剂而言,当空速低于20000 h^-1时,氢气的去除率能达到约95%,而当空速达到39270 h^-1时,氢气的去除率仅为10.9%。鉴于这一问题,提出通过采用尾排空气的分流手段调整催化燃烧反应器对空速的要求,以提高尾气中氢气的去除率。  相似文献   
87.
This study dealt with in situ removal of copper from sediments through an electrokinetic (EK) process driven by a galvanic cell. Iron (Fe) and carbon (C) were placed separately and connected with a conductive wire. Polluted sediments were put between them and water was filled above the sediments. The galvanic cell was thus formed due to the different electrode potentials of Fe and C. The cell could remove the pollutants in the sediments by electromigration and/or electroosmosis. Results showed that a weak voltage less than 1V was formed by the galvanic cell. The voltage decreased with the increase of time. A slight increase of sediment pH from the anode (Fe) to the cathode (C) was observed. The presence of supernatant water inhibited the variation of sediment pH because H(+) and OH(-) could diffuse into the water. The removal of copper was affected by the sediment pH and the distribution of electrolyte in sediment and supernatant water. Lower pH led to higher removal efficiency. More electrolyte in the sediment and/or less electrolyte in the supernatant water favored the removal of copper. The major removal mechanism was proposed on the basis of the desorption of copper from sediment to pore solution and the subsequent electromigration of copper from the anode to the cathode. The diffusion of copper from sediment to supernatant water was negligible.  相似文献   
88.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   
89.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
90.
There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号