首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   2篇
安全科学   70篇
废物处理   21篇
环保管理   50篇
综合类   100篇
基础理论   107篇
环境理论   7篇
污染及防治   20篇
评价与监测   1篇
社会与环境   25篇
灾害及防治   2篇
  2024年   1篇
  2023年   12篇
  2022年   5篇
  2021年   17篇
  2020年   21篇
  2019年   14篇
  2018年   17篇
  2017年   37篇
  2016年   33篇
  2015年   31篇
  2014年   44篇
  2013年   85篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   6篇
  2005年   10篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   5篇
  1996年   1篇
  1995年   8篇
  1992年   1篇
  1989年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有403条查询结果,搜索用时 315 毫秒
291.
蓝莓果酒生产废水的水质、水量季节性差异很大,污染物浓度较高,属中浓度有机废水,直接排放将对环境造成严重污染。采用曝气生物滤池工艺废水中CODcr、BOD5、SS去除率分别可达95%、97%、89%,系统运行稳定,处理效果较好。  相似文献   
292.
ABSTRACT

The aim of this study was to examine the potential of inoculating earthworms (Pheretima sp.) in order to enhance phytoremediation of polycyclic aromatic hydrocarbons (PAH) present in soils with the use of tall fescue (Festuca arundinacea). In particular, experiments with or without inoculating earthworms for removal of pyrene was investigated. Results showed that planting of F. arundinacea enhanced the removal of pyrene at initial content over 70 days approximately 54%–80% but only 12%–24% occurred in non-planted soils. After inoculating earthworms, the dissipation rates of pyrene in planted soils were increased up to 61%–86%, which was 6%–12% higher than those in corresponding soils without inoculating earthworms. Among all possible pathways, the contribution of plant--microbial interactions on removal of pyrene was predominant, either with (46%) or without inoculating earthworms (52%), is the primary mechanism of contaminant removal. Data suggest inoculating earthworms may be a feasible way for reinforcing removal of PAH in contaminated sites.  相似文献   
293.
In this study, a cerium molybdate–polyacrylonitrile (CM–PAN) composite ion exchanger was synthesised and its characteristics were determined by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetry (TGA), specific area measurement (BET), X-ray fluorescence and CHN elemental analyses. The adsorption of caesium from aqueous solutions by CM–PAN composite was investigated under batch and continuous conditions. The distribution coefficient of caesium on the composite sorbent was studied as a function of pH, solution temperature and the presence of interfering cations, and the optimum conditions for a batch system were determined. Pseudo-first- and second-order sorption kinetic models were used to investigate the kinetics of adsorption and the results pointed to the pseudo-second-order model for caesium sorption kinetics. The intraparticle diffusion model was used to the predict rate-limiting step of the ion exchange process in order to specify the sorption mechanism. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models were fitted to the experimental sorption data, where the Freundlich model showed a good agreement. The adsorption thermodynamic parameters, standard enthalpy, entropy and Gibbs’ free energy were calculated and the reaction was found to be endothermic and spontaneous. Finally, the dynamic sorption capacities of the sorbent at two breakthroughs were calculated from the continuous system.  相似文献   
294.
Spatial and temporal variability in zooplankton was studied at eight stations located in the Lesina Lagoon (South Adriatic Sea) Salinity, temperature, dissolved oxygen and chlorophyll a (in the lagoon) at these stations were also assessed. The zooplankton community was characterised by clear seasonal oscillations and mostly represented by copepods and their larvae. The dominant copepod species were Calanipeda aquaedulcis and Acartia tonsa, which exhibited spatial–temporal segregation in the lagoon. C. aquaedulcis copepodites seemed to be better adapted to oligotrophic and oligohaline conditions compared with the A. tonsa population. The invasive species A. tonsa has completely replaced the formerly abundant Acartia margalefi. A positive correlation was found between abundances, total species numbers and trophic state. An increasing abundance trend was shown from the lagoon towards the sea. The highest diversity indices were recorded at the two channel inlets, during high tide due to the absence of a clear dominance of one or more coastal species and the co-occurrence of species of lagoon and marine origin.  相似文献   
295.
Daily PM2.5, PM2.5–10 and TSP have been collected by Universal and PS‐1 sampler simultaneously at a site within Taichung between February and March 1999. The filters were analyzed by atomic absorption spectrophotometry for the elemental analysis of Ca, Fe, Mn, Pb, Cu, Zn and Cr. In general, the concentration of these metallic elements are higher in fine particles than in coarse particles. On average, PM10 accounted for 67% of the TSP at daytime, while at nighttime PM10 accounted for only 44% of the TSP. For PM2.5, PM2.5–10 and TSP concentrations, there were no significant differences between day and night period. The averaged concentrations of metallic elements in PM2.5 at daytime were all higher than that at nighttime. Ca, Fe and Zn have large and variable PM2.5 concentrations at both daytime and nighttime. For the daytime Zn and Pb account for the largest portion of the heavy metal elements. For the nighttime, Zn and Cr make the largest portion of the heavy metal elements. The concentrations of Mn were higher on fine particulates. The trace metals Cu and Cr in Taichung are probably due to particulates emitted by Taichung Fire Power Plants transported into the sampling area by the prevailing northwesterly wind.  相似文献   
296.
297.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   
298.
The aim of this study was to compare the cytotoxicity and the (pro-)inflammatory responses of two-stroke (direct injection and carburetor technology) and four-stroke scooter and diesel car exhaust emissions on lung cells in vitro. This was analyzed by exposing a 3D in vitro model of the epithelial airway (consisting of human bronchial epithelial cells (cell line 16HBE14o?) combined with human whole blood monocyte-derived macrophages and dendritic cells) to physically characterized exhaust emissions. Biological endpoints of cytotoxicity (lactate dehydrogenase release), as well as pro-inflammatory cytokine (tumor necrosis factor (TNF)-α) and inflammatory chemokine (interleukin(IL)-8) stimulation were examined. Two-stroke direct injection scooter exhaust contained the highest particle number concentration and nitrogen oxides (NO x ) concentrations and the emissions from the two-stroke carburetor scooter contained the highest hydrocarbon and lowest NO x concentrations. The four-stroke scooter emitted the highest carbon monoxide concentration whereas the cars emitted the lowest. The combination of various technical optimizations for the two-stroke direct injection scooter (particle filter, oxidative catalyst, better oil and fuel) reduced the total emissions strongly and the TNF-α concentration significantly (p?相似文献   
299.
The photocatalytic degradation of the herbicide isoproturon under solar light was investigated in aqueous solution containing a Bi–TiO2/zeolite photocatalyst. The catalysts were characterized using X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The effect of Bi–TiO2 loading onto the zeolite support and influence of the parameters such as catalyst amount, pH, and initial concentration of isoproturon on the degradation rate were evaluated. The recycling ability of the catalyst was found to be sustainable for elongated periods. The high activity of the Bi–TiO2/zeolite was attributed to its absorptivity of visible light and its high adsorption capacity for the pollutant molecules.  相似文献   
300.
The basic objective of this study was to compile the available information on the composition of sewage and industrial wastewaters in India and their effect on soil–plant health upon their use in agricultural fields. The composition of sewage water is quite variable depending upon the contributing source, mode of collection, and treatment provided. The composition of sewage water varied from site to site which was in accordance with the type of industries present in that area. Continuous use of sewage and industrial wastewater irrigation recorded improvement in water retention, hydraulic conductivity, organic C and build-up of available N, P, K, micronutrient status, and soil microbial count. The electrical conductivity although increased due to sewage irrigation, it was within the tolerance limit to cause any soil salinity hazard. The toxic metals like Cd, Cr, Pb, and Ni were found to be accumulated in soil and plant due to long-term use of sewage and industrial wastewater irrigation. The concentration of these metals was higher in leafy vegetables than in grain crops. This warrants the potential hazard to soil–plant health suggesting necessity of their safe use after pretreatment as a cheap potential alternative source of plant nutrients in agriculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号