首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   4篇
  国内免费   13篇
环保管理   4篇
综合类   22篇
基础理论   3篇
评价与监测   7篇
社会与环境   3篇
灾害及防治   4篇
  2023年   2篇
  2018年   2篇
  2017年   2篇
  2015年   4篇
  2014年   3篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有43条查询结果,搜索用时 250 毫秒
41.
宁波人为源VOC清单及重点工业行业贡献分析   总被引:4,自引:9,他引:4  
李璇  王雪松  刘中  吴梁  翁燕波  胡杰 《环境科学》2014,35(7):2497-2502
宁波是我国华东地区的重要工业城市,也是长江三角洲南翼的经济中心.近年来,宁波工业活动的VOC排放及其对空气质量和人体健康的不利影响越来越受到关注.通过收集宁波市各类VOC人为源的活动水平数据,采用"自下而上"的估算方法,建立了宁波地区2010年人为源VOC的排放清单,并进一步分析了宁波市排放VOC的重点工业行业及其贡献大小.研究结果表明,宁波市2010年人为源的VOC排放总量为17.6万t,其中工业源、机动车排放源和居民源是宁波市人为排放VOC的主要来源,分别占总排放量的62.0%、17.2%和15.5%.而在工业源中,合成材料制造业、精炼石油产品制造业是宁波市两个重点VOC排放工业行业,其排放量分别占宁波VOC总量的18.6%和13.1%,反映出石油化工企业对宁波市VOC排放的影响程度.  相似文献   
42.
宁波市大气挥发性有机物污染特征及关键活性组分   总被引:1,自引:0,他引:1       下载免费PDF全文
于2010年冬、春、秋三季,在宁波市3个采样点(市区、镇海站、北仑站)进行大气VOCs(挥发性有机物)样品的采集与分析,并对36种大气VOCs组分进行测量,分析宁波市大气VOCs组分组成及其时空分布特征. 用各组分的·OH反应速率表征其化学反应活性,以识别宁波市大气VOCs的关键活性组分. 结果表明:宁波市ρ(VOCs)(36种大气VOCs组分的平均质量浓度)在3个季节的平均值为198.2 μg/m3,主要成分为烷烃(48.6%)、芳香烃(33.6%)、烯烃(17.8%). ρ(VOCs)的季节变化表现为冬季(298.5 μg/m3)>秋季(174.1 μg/m3)>春季(122.0 μg/m3),空间上表现为市区(161.3 μg/m3)<镇海(225.0 μg/m3)<北仑(208.2 μg/m3). 宁波市大气VOCs的化学组成相对稳定,·OH平均反应速率常数和乙烯相当,总化学反应活性较强;对化学反应活性贡献最大的是烯烃,其体积混合比约占VOCs体积混合比的22%,但对VOCs化学反应活性的贡献达64%以上;关键活性组分为1-丁烯、反-2-丁烯、间,对-二甲苯、乙烯和戊烯.   相似文献   
43.
为了深入认识宁波市冬季细颗粒物(PM2.5)的污染特征和主要影响因素的作用规律,利用Models-3/CMAQ模式系统对2013年1月宁波市的PM2.5污染形成过程进行了模拟分析.结果表明,宁波市PM2.5的重点污染区主要分布在市区、北部地区及东部沿海,除了受到局地污染源排放的影响外,对比非污染的情况,大气输入和气溶胶生成作用的增强是引起PM2.5污染的主导因素,其中水平传输过程对PM2.5浓度升高的贡献最为突出.气溶胶过程的贡献在近地面(0~80 m)最显著,随着高度升高而逐渐减弱.硝酸盐在局地二次生产的细颗粒物中占主要份额(~70%).对于硫酸盐,局地二次生成所占的比例很低,主要来自宁波局地排放和宁波以外地区的大气传输(贡献比例分别为44%和40%).宁波市的PM2.5污染主要受到来自北向沿岸气团(占比54%)、西北向大陆气团(占比21%)和西向局地气团(占比25%)的传输影响.在西北方向短距离区域传输的作用下PM2.5浓度最高;在我国中东部大范围灰霾天气的影响下,西北向和北向的长距离传输作用也会导致宁波地区的PM2.5污染.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号