首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   4篇
  国内免费   32篇
安全科学   1篇
废物处理   2篇
环保管理   18篇
综合类   68篇
基础理论   26篇
污染及防治   54篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   9篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   10篇
  2008年   19篇
  2007年   15篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有186条查询结果,搜索用时 616 毫秒
161.
In principle the protection of environmental resources is in every ones interest, yet it is evident that this is not what often occurs. In some cases there is an identifiable person or corporation, whose environmental impact can be tractably regulated either politically or via market forces. In other cases there is cumulative impact on a commonly held or "common pool" resource, from a variety of users, making establishing rights and responsibilities for resource management more difficult. The water of the Ythan catchment is one such 'Common Pool Resource' (CPR). An intensively farmed catchment also sustaining a sizable population, the consequent nitrate inputs to the water are believed to be the cause of algal matting at the estuary mouth, an internationally designated wildlife reserve. This led to its designation as Scotland's first Nitrate Vulnerable Zone (NVZ). Supported by the EU Life Environment fund, the Ythan Project attempted to foster co-operation between farmers and the wider community of the Ythan catchment to protect and restore the river environment. Throughout the project surveys were undertaken concerning the popularity of the Ythan Project's voluntary approach compared with more individualist or state-organised approaches. Taking CPR theory as a framework, key findings from those surveys are presented and discussed as to their implications for organisational intervention in CPR problems.  相似文献   
162.
Elevated nitrate concentrations in streamwater are a major environmental management problem. While land use exerts a large control on stream nitrate, hydrology often plays an equally important role. To date, predictions of low-flow nitrate in ungauged watersheds have been poor because of the difficulty in describing the uniqueness of watershed hydrology over large areas. Clearly, hydrologic response varies depending on the states and stocks of water, flow pathways, and residence times. How to capture the dominant hydrological controls that combine with land use to define streamwater nitrate concentration is a major research challenge. This paper tests the new Hydrologic Landscape Regions (HLRs) watershed classification scheme of Wolock and others (Environmental Management 34:S71-S88, 2004) to address the question: Can HLRs be used as a way to predict low-flow nitrate? We also test a number of other indexes including inverse-distance weighting of land use and the well-known topographic index (TI) to address the question: How do other terrain and land use measures compare to HLR in terms of their ability to predict low-flow nitrate concentration? We test this for 76 watersheds in western Oregon using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program and Regional Environmental Monitoring and Assessment Program data. We found that HLRs did not significantly improve nitrate predictions beyond the standard TI and land-use metrics. Using TI and inverse-distance weighting did not improve nitrate predictions; the best models were the percentage land use—elevation models. We did, however, see an improvement of chloride predictions using HLRs, TI, and inverse-distance weighting; adding HLRs and TI significantly improved model predictions and the best models used inverse-distance weighting and elevation. One interesting result of this study is elevation consistently predicted nitrate better than TI or the hydrologic classification scheme.  相似文献   
163.
The dominant nitrogen (N) fluxes were simulated in a mountain forest ecosystem on dolomitic bedrock in the Austrian Alps. Based on an existing small-scale climate model the simulation encompassed the present situation and a 50-yr projection. The investigated scenarios were current climate, current N deposition (SC1) and future climate (+2.5 degrees C and +10% annual precipitation) with three levels of N deposition (SC2, 3, 4). The microbially mediated N transformation, including the emission of nitrogen oxides, was calculated with PnET-N-DNDC. Soil hydrology was calculated with HYDRUS and was used to estimate the leaching of nitrate. The expected change of the forest ecosystem due to changes of the climate and the N availability was simulated with PICUS. The incentive for the project was the fact that forests on dolomitic limestone stock on shallow Rendzic Leptosols that are rich in soil organic matter are considered highly sensitive to the expected environmental changes. The simulation results showed a strong effect due to increased temperatures and to elevated levels of N deposition. The outflux of N, both as nitrate (6-25kg Nha(-1)yr(-1)) and nitrogen oxides (1-2kg Nha(-1)yr(-1)), from the forest ecosystem are expected to increase. Temperature exerts a stronger effect on the N(2)O emission than the increased rate of N deposition. The main part of the N emission will occur as N(2) (15kg Nha(-1)yr(-1)). The total N loss is partially offset by increased rates of N uptake in the biomass due to an increase in forest productivity.  相似文献   
164.
Heterogeneity and dynamics of eight soil surface characteristics essential for plants—ammonium and nitrate concentrations, water content, temperature, pH, organic matter, nitrification and ammonification rates—were studied in a Mediterranean-type ecosystem on four occasions over a year. Soil properties varied seasonally and were influenced by plant species. Nitrate and ammonium were present in the soil at similar concentrations throughout the year. The positive correlation between them at the time of greatest plant development indicates that ammonium is a readily available nitrogen source in Mediterranean-type ecosystems. The results presented here suggest that plant cover significantly affects soil surface characteristics.  相似文献   
165.
In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system.  相似文献   
166.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   
167.
One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. It has been proposed that adding labile carbon sources to septic distribution fields could enhance heterotrophic denitrification and thus reduce nitrate concentrations in shallow groundwater. In this study, a numerical model which solves for variably saturated flow and reactive transport of multiple species is employed to investigate the performance of a drain field design that incorporates a fine-grained denitrification layer. The hydrogeological scenario simulated is an unconfined sand aquifer. The model results suggest that the denitrification layer, supplemented with labile organic carbon, may be an effective means to eliminate nitrogen loading to shallow groundwater. It is also shown that in noncalcareous aquifers, the denitrification reaction may provide sufficient buffering capacity to maintain near neutral pH conditions beneath and down gradient of the drain field. Leaching of excess dissolved organic carbon (DOC) from the denitrification layer is problematic, and causes an anaerobic plume to develop in simulations where the water table is less than 5-6 m below ground surface; this anaerobic plume may lead to other down gradient changes in groundwater quality. A drain field and denitrification layer of smaller dimensions is shown to be just as effective for reducing nitrate, but has the benefit of reducing the excess DOC leached from the layer. This configuration will minimize the impact of wastewater disposal in areas where the water table is as shallow as 3.5 m.  相似文献   
168.
A mathematical model of urinary nitrogen and water flow in soil has been developed that incorporated stochastic rainfall and stochastic temperature events. This model was used to characterise the variability in urine patch nitrogen leaching at Taupo, New Zealand. This stochastic model was also used to more accurately determine the effect of urinary patch overlap on cow urinary nitrogen flow and leaching in soil. Nitrogen leaching from single urine deposits on pasture in the winter ranged from 0 to 75% of applied nitrogen as a result of stochastic rainfall events. Rainfall effects explained 98% of the variance in nitrogen leaching due to stochastic rainfall and temperature effects combined. The model predicted that on average 38, 61, and 71% of the nitrogen in single, double and triple urine patches is leached in the winter. Nitrogen leaching rates were significantly greater in the winter than the summer months. The distribution in the amount of nitrogen leached from single urine patches was close to normal in the winter but approximately exponentially distributed in the summer. The variability in total nitrogen leached from a field also decreased as the stocking rate increased. A quantitative modelling framework is crucial for understanding nitrogen transport in pastoral systems and for effectively setting and enforcing restrictions imposed by regulatory bodies on nitrogen losses from pastoral farming and this study represents a component of this framework.  相似文献   
169.
离子色谱法测定蔬菜中硝酸盐含量方法初探   总被引:1,自引:0,他引:1  
蔬菜作为人们日常生活中必需的鲜活农产品,其食用的安全性日益引起重视。食品中的亚硝胺是大家公认的一种化学致癌物,其前体包括硝酸盐和亚硝酸盐。由于化肥的广泛使用,尤其是化学氮肥,使蔬菜中硝酸盐含量过大。分析蔬菜中硝酸盐含量也可以间接了解农田土壤的环境质量。文章阐述了离子色谱法测定蔬菜(如小白菜、葱、韭菜、莴笋叶及苋菜等)中硝酸盐含量的前处理方法与测定步骤。它可以作为测定蔬菜、水果等食品中硝酸盐含量的一种精密度高、简单快速的方法。  相似文献   
170.
Temporal trends of non-sea salt (nss-) sulfate and nitrate were analyzed from nationwide precipitation chemistry measurements provided by the Ministry of the Environment (MOE) for the 1988–2002 fiscal years (April–March). The concentrations and deposition of nss-sulfate were found to be decreasing, and those of nitrate were stable or slightly increasing at most sites. These deposition trends were discussed from the viewpoint of emissions of SO2 and NOX during the period of interest. Because monitoring techniques have changed in the number of active sites, samplers, and analytical methods during the operation period, the median of all annual depositions measured in Japan in a specific year was selected as the annual representative. The contribution of specific emission sources was also calculated for 1990 on the basis of the nss-sulfate and nitrate deposition in Japan obtained with a model simulation in which the model did not include volcanic emissions from Mt. Oyama, Miyakejima Island, which began to erupt suddenly and violently in 2000. For nss-sulfate, the calculated deposition agrees well with the intensity and trends of the median up to 1999. After 2000, a higher deposition than calculated in the preceding years was evident, which is attributable to the volcanic SO2 from Mt. Oyama. For nitrate, both the calculated and observed depositions were slightly increasing; however, the calculation was found to exceed the observation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号