首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   4篇
  国内免费   32篇
安全科学   1篇
废物处理   2篇
环保管理   18篇
综合类   68篇
基础理论   26篇
污染及防治   54篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   9篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   10篇
  2008年   19篇
  2007年   15篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
21.
The distribution of three important dissolved forms of nitrogen, viz. nitrate, nitrite and urea in the surface and bottom water samples collected from 27 selected hydrographic profiles, in the Arabian Sea, along the west coast of India is described. Of the three forms, nitrate concentrations were the highest and comparatively higher concentrations were observed in the bottom water. Decomposition of organic matter resulting in the release of the thermodynamically stable nitrogen species, i.e. nitrate, may be the major factor resulting in higher nitrate concentrations at these depths, where the water is also characterized by low values of dissolved oxygen and temperature. The significant positive correlation between A.O.U. and nitrate of the bottom water samples emphasizes the role of oxidative decomposition of organic matter which plays an active role in reducing the oxygen concentrations below the theoretical values since at this depth ( , 200 m) the net production is taken to be zero. This is also evidenced by the negative correlation of nitrate with dissolved oxygen and temperature, for the bottom samples.  相似文献   
22.
In the 1980s and 1990s, it became increasingly clear that changes in external nutrient loads alone could not entirely explain the severe eutrophication of surface waters in the Netherlands. Nowadays, 'internal eutrophication' has become a widely accepted term in Dutch water management practice to describe the eutrophication of an ecosystem without additional external input of nutrients (N, P, K). This review surveys the principal mechanisms involved in this process. It also discusses possible remedies to combat internal eutrophication.  相似文献   
23.
The distribution of three important dissolved forms of nitrogen, viz. nitrate, nitrite and urea in the surface and bottom water samples collected from 27 selected hydrographic profiles, in the Arabian Sea, along the west coast of India is described. Of the three forms, nitrate concentrations were the highest and comparatively higher concentrations were observed in the bottom water. Decomposition of organic matter resulting in the release of the thermodynamically stable nitrogen species, i.e. nitrate, may be the major factor resulting in higher nitrate concentrations at these depths, where the water is also characterized by low values of dissolved oxygen and temperature. The significant positive correlation between A.O.U. and nitrate of the bottom water samples emphasizes the role of oxidative decomposition of organic matter which plays an active role in reducing the oxygen concentrations below the theoretical values since at this depth ( ≈200 m) the net production is taken to be zero. This is also evidenced by the negative correlation of nitrate with dissolved oxygen and temperature, for the bottom samples.  相似文献   
24.
Extremely sandy soils and poorly distributed high annual rainfall in the state of Florida contribute to significant leaching losses of nutrients from routine fertilization practices. A leaching column experiment was conducted to evaluate the leaching losses of nutrients when using currently available N, P, K blend fertilizers for young citrus tree fertilization. Fertilizer blends included NH4NO3, Ca(NO3)2, IBDU, IBDU plus Escote, Nutralene, Osmocote, and Meister. Following leaching of 1000 ml of water through soil columns, which simulates leaching conditions with 26 cm of rainfall, the amount of NO3 and NH4 recovered in the leachate from soil columns amended with an NH4NO3 blend accounted for 37% and 88% of the respective nutrients contained in the quantity of blend per column. The corresponding values for soil columns amended with a Ca(NO3)2 blend were 48% and 100%. Leraching losses of both NO3 (<3%) and NH4 (<4%) were drastically decreased when using controlled-release fertilizers. The recoveries of P and K in 1000 ml of leachate were 1.3% and 8%, respectively, of the nutrients added as Osmocote, which contained coated P and K sources. In the case of the rest of fertilizer blends, the recoveries of P and K in 1000 ml of leachate were as high as 52%–100% and 28%–100%, respectively. Therefore, controlled-release technology offers an important capability for minimizing leaching losses of nutrients.  相似文献   
25.
Nitrate in groundwater: an isotopic multi-tracer approach   总被引:12,自引:0,他引:12  
In spite of increasing efforts to reduce nitrogen inputs into groundwater from intensive agriculture, nitrate (NO3) remains one of the major pollutants of drinking-water resources worldwide. Determining the source(s) of NO3 contamination in groundwater is an important first step for improving groundwater quality by emission control, and it is with this aim that we investigated the viability of an isotopic multi-tracer approach (delta15N, delta11B, 87Sr/86Sr), in addition to conventional hydrogeologic analysis, in two small catchments of the Arguenon watershed (Brittany, France). The main anthropogenic sources (fertilizer, sewage effluent, and hog, cattle and poultry manure) were first characterized by their specific B, N and Sr isotope signatures, and compared to those observed in the ground- and surface waters. Chemical and isotopic evidence shows that both denitrification and mixing within the watershed have the effect of buffering NO3 contamination in the groundwater. Coupled delta11B, delta15N and 87Sr/86Sr results indicate that a large part of the NO3 contamination in the Arguenon watershed originates from the spreading of animal manure, with hog manure being a major contributor. Point sources, such as sewage effluents, contribute to the NO3 budget of the two watersheds.  相似文献   
26.
In recent years there has been an increasing interest in the use of autohydrogenotrophic bacteria to treat nitrate from wastewater. However, our knowledge about the characteristics of extracellular polymeric substances (EPS) releasing by these activities is not yet very advanced. This study aimed to investigate the change in EPS compositions under various pH values and hydrogen flow rates, taking into consideration nitrogen removal. Results showed that pH 7.5 and a hydrogen flow rate of 90 mL/min were the optimal operating conditions, resulting in 100% nitrogen removal after 6 hr of operation. Soluble and bound polysaccharides decreased, while bound proteins increased with increasing pH. Polysaccharides increased with increasing hydrogen flow rate. No significant change of bound proteins was observed at various hydrogen flow rates.  相似文献   
27.
土壤中重金属测定方法探讨   总被引:6,自引:0,他引:6  
采用硝酸+氢氟酸+高氯酸全分解方法消解土壤样品,并结合原子吸收分光光度法和标准加入法测定土壤中、锌、铅、镉、镍、总铬的含量.结果表明,该方法具有操作简便、快速,节省试剂,准确可靠等特点:实际土壤样品的检测结果完全能满足环境土壤样品测定的要求.  相似文献   
28.
利用厌氧-缺氧-好氧处理城市废水的中试规模系统,对其缺氧相中的脱氮硫杆菌进行了研究。结果表明,脱氮硫杆菌的最高脱氮作用率、氧化Na2S的最高浓度、S2-的最高污泥负荷率和污泥中脱氮硫杆菌的最高含量(MPN)分别为3.6mg-NO3/gVSS·h、1750mg/L、25mg-S2-/gVSS·d和1.1×108/gVSS。脱氮硫杆菌在氧化二价硫成硫酸并还原硝酸为氮气的过程中起着相当有意义的作用。  相似文献   
29.
本文综述了近十几年来我国城市蔬菜中硝酸盐和亚硝酸盐污染的研究结果,表明随着氮肥使用量的增大,蔬菜中硝酸盐污染较为严重而亚硝酸盐污染也不容忽视。探讨了蔬菜受硝酸盐和亚硝酸盐污染的影响因素及控制对策  相似文献   
30.
Treating water contaminants via heterogeneously catalyzed reduction reaction is a subject of growing interest due to its good activity and superior selectivity compared to conventional technology, yielding products that are non-toxic or substantially less toxic. This article reviews the application of catalytic reduction as a progressive approach to treat different types of contaminants in water, which covers hydrodehalogenation for wastewater treatment and hydrogenation of nitrate/nitrite for groundwater remediation. For hydrodehalogenation, an overview of the existing treatment technologies is provided with an assessment of the advantages of catalytic reduction over the conventional methodologies. Catalyst design for feasible catalytic reactions is considered with a critical analysis of the pertinent literature. For hydrogenation, hydrogenation of nitrate/nitrite contaminants in water is mainly focused. Several important nitrate reduction catalysts are discussed relating to their preparation method and catalytic performance. In addition, novel approach of catalytic reduction using in situ synthesized H2 evolved from water splitting reaction is illustrated. Finally, the challenges and perspective for the extensive application of catalytic reduction technology in water treatment are discussed. This review provides key information to our community to apply catalytic reduction approach for water treatment.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号