首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   6篇
  国内免费   16篇
安全科学   30篇
废物处理   6篇
环保管理   52篇
综合类   76篇
基础理论   53篇
污染及防治   47篇
评价与监测   22篇
社会与环境   5篇
灾害及防治   4篇
  2023年   7篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   12篇
  2014年   14篇
  2013年   18篇
  2012年   8篇
  2011年   20篇
  2010年   7篇
  2009年   20篇
  2008年   24篇
  2007年   21篇
  2006年   13篇
  2005年   12篇
  2004年   9篇
  2003年   13篇
  2002年   8篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   8篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
排序方式: 共有295条查询结果,搜索用时 12 毫秒
291.
Cadaver decomposition in terrestrial ecosystems   总被引:3,自引:0,他引:3  
A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.  相似文献   
292.
In the present study, we compared the soil physical and chemical properties, biomass of forest litter and nutrient contents in three-and-half-year plantations of E. grandis mixed with Toona ciliate, Alnus formosana, Sassafras tzumu. The results indicated that mixing T. ciliate and A. formosana with E. grandis mitigated soil acidification. In E. grandis × S. tzumu plantations, the soil bulk density decreased, but the moisture capacity and porosity increased. The mixed plantations of E. grandis × S. tzumu significantly increased the soil total C, N, P and K content, by 64.7%, 41.9%, 28.6% and 7.7%, respectively. The mixed plantations of E. grandis × A. formosana also significantly increased the soil total C, N and P content, by 15.2%, 27.9% and 47.6%, respectively. Compared with the pure plantations, the mixed plantations had significantly lower soil hydrolysis N and higher available P content. Only the E. grandis × A. formosana plantations had higher soil available K content. Compared with that in pure plantations, the biomass of branch litter and leaf litter was significantly higher in E. grandis × A. formosana plantations but significantly lower in E. grandis × A. formosana and E. grandis × A. formosana plantations; the biomass of leaf litter and total biomass of litter of E. grandis × S. tzumu were 9.8% and 9.3% respectively lower. The litter C content in three kinds of mixed forest was significantly lower and the litter N content was significantly higher than that in the pure plantations. Only the mixed plantations of E. grandis × A. formosana plantations would increase the content of litter P. The mixed plantations of E. grandis × S. tzumu would increase the content of litter K. In general, S. tzumu is the optimal tree species to mix with E. grandis, followed by A. formosana, but T. ciliate is unsuitble for mixed plantation with E. grandis.  相似文献   
293.
A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China,NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-basedmodels will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models.  相似文献   
294.
Nutrients and water play an important role in microalgae cultivation. Using wastewater as a culture medium is a promising alternative to recycle nutrients and water, and for further developing microalgae-based products. In the present study, two species of microalgae, Chlorella sp. (high ammonia nitrogen tolerance) and Spirulina platensis (S. platensis, high growth rate), were cultured by using poultry wastewater through a two-stage cultivation system for algal biomass production. Ultrafiltration (UF) or centrifuge was used to harvest Chlorella sp. from the first cultivation stage and to recycle culture medium for S. platensis growth in the second cultivation stage. Results showed the two-stage cultivation system produced high microalgae biomass including 0.39 g·L–1Chlorella sp. and 3.45 g·L–1S. platensis in the first-stage and second-stage, respectively. In addition, the removal efficiencies of NH4+ reached 19% and almost 100% in the first and the second stage, respectively. Total phosphorus (TP) removal reached 17% and 83%, and total organic carbon (TOC) removal reached 55% and 72% in the first and the second stage, respectively. UF and centrifuge can recycle 96.8% and 100% water, respectively. This study provides a new method for the combined of pure microalgae cultivation and wastewater treatment with culture medium recycling.
  相似文献   
295.
Nitrogen flows impacted by human activities in the Day-Nhue River Basin in northern Vietnam have been modeled using adapted material flow analysis (MFA). This study introduces a modified uncertainty analysis procedure and its importance in MFA. We generated a probability distribution using a Monte Carlo simulation, calculated the nitrogen budget for each process and then evaluated the plausibility under three different criterion sets. The third criterion, with one standard deviation of the budget value as the confidence interval and 68% as the confidence level, could be applied to effectively identify hidden uncertainties in the MFA system. Sensitivity analysis was conducted for revising parameters, followed by the reassessment of the model structure by revising equations or flow regime, if necessary. The number of processes that passed the plausibility test increased from five to nine after reassessment of model uncertainty with a greater model quality. The application of the uncertainty analysis approach to this case study revealed that the reassessment of equations in the aquaculture process largely changed the results for nitrogen flows to environments. The significant differences were identified as increased nitrogen load to the atmosphere and to soil/groundwater (17% and 41%, respectively), and a 58% decrease in nitrogen load to surface water. Thus, modified uncertainty analysis was considered to be an important screening system for ensuring quality of MFA modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号