全文获取类型
收费全文 | 179篇 |
免费 | 3篇 |
国内免费 | 3篇 |
专业分类
安全科学 | 14篇 |
废物处理 | 2篇 |
环保管理 | 18篇 |
综合类 | 29篇 |
基础理论 | 100篇 |
污染及防治 | 8篇 |
评价与监测 | 8篇 |
社会与环境 | 4篇 |
灾害及防治 | 2篇 |
出版年
2024年 | 2篇 |
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2016年 | 4篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 2篇 |
2012年 | 3篇 |
2011年 | 12篇 |
2010年 | 4篇 |
2009年 | 9篇 |
2008年 | 20篇 |
2007年 | 12篇 |
2006年 | 14篇 |
2005年 | 8篇 |
2004年 | 8篇 |
2003年 | 8篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 9篇 |
1999年 | 7篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 7篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1985年 | 1篇 |
1973年 | 2篇 |
排序方式: 共有185条查询结果,搜索用时 15 毫秒
41.
Primitively eusocial wasps are generally headed by behaviorally dominant queens who use their aggression to suppress worker reproduction. In contrast, queens in the primitively eusocial wasp Ropalidia marginata are strikingly docile and non-aggressive. However, workers exhibit dominance-subordinate interactions among themselves. These interactions do not appear to reflect reproductive competition because there is no correlation between the relative position of an individual in the dominance hierarchy of the colony and the likelihood that she will succeed a lost/removed queen. Based on the observation that foraging continues unaltered in the absence of the queen and the correlation between dominance behavior and foraging, we have previously suggested that dominance-subordinate interactions among workers in R. marginata have been co-opted to serve the function of decentralized, self-organized regulation of foraging. This idea has been supported by an earlier experimental study where it was found that a reduced demand for food led to a significant decrease in dominance behavior. In this study, we perform the converse experiment, demonstrate that dominance behavior increases under conditions of starvation, and thus provide further evidence in support of the hypothesis that intranidal workers signal hunger through aggression. 相似文献
42.
The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control conditionwere investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide) ratiowith slight excess nitrate is necessary for optimal conditions of efficient sulfide controlwith lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems. 相似文献
43.
Samuel C. Nicol Iadine Chadès Simon Linke Hugh P. Possingham 《Ecological modelling》2010,221(21):2531-2536
When looking for the best course of management decisions to efficiently conserve metapopulation systems, a classic approach in the ecology literature is to model the optimisation problem as a Markov decision process and find an optimal control policy using exact stochastic dynamic programming techniques. Stochastic dynamic programming is an iterative procedure that seeks to optimise a value function at each timestep by evaluating the benefits of each of the actions in each state of the system defined in the Markov decision process.Although stochastic dynamic programming methods provide an optimal solution to conservation management questions in a stochastic world, their applicability in metapopulation problems has always been limited by the so-called curse of dimensionality. The curse of dimensionality is the problem that adding new state variables inevitably results in much larger (often exponential) increases in the size of the state space, which can make solving superficially small problems impossible. The high computational requirements of stochastic dynamic programming methods mean that only simple metapopulation management problems can be analysed. In this paper we overcome the complexity burden of exact stochastic dynamic programming methods and present the benefits of an on-line sparse sampling algorithm proposed by Kearns, Mansour and Ng (2002). The algorithm is particularly attractive for problems with large state spaces as the running time is independent of the size of the state space of the problem. This appealing improvement is achieved at a cost: the solutions found are no longer guaranteed to be optimal.We apply the algorithm of Kearns et al. (2002) to a hypothetical fish metapopulation problem where the management objective is to maximise the number of occupied patches over the management time horizon. Our model has multiple management options to combat the threats of water abstraction and waterhole sedimentation. We compare the performance of the optimal solution to the results of the on-line sparse sampling algorithm for a simple 3-waterhole case. We find that three look-ahead steps minimises the error between the optimal solution and the approximation algorithm. This paper introduces a new algorithm to conservation management that provides a way to avoid the effects of the curse of dimensionality. The work has the potential to allow us to approximate solutions to much more complex metapopulation management problems in the future. 相似文献
44.
The impact of a parasitic infestation may be influenced by nutritional state, in both individuals and colonies. This study
examined the interaction between pollen storage and the effects of an infestation by the mite, Varroa jacobsoni Oudemans, in colonies of the honey bee, Apis mellifera L. We manipulated the pollen storage and mite infestation levels of colonies, and measured pollen foraging and brood rearing.
Increased pollen stores decreased both the number of pollen foragers and pollen load size, while initially at least foragers
from colonies with moderate infestations carried smaller pollen loads than those from lightly infested colonies. Over the
course of the experiment, all colonies significantly increased pollen-foraging rates and pollen consumption, which was presumably
a seasonal effect. Lightly infested colonies exhibited a larger increase in pollen forager number than moderately infested
colonies, suggesting that more intense mite infestations compromised forager recruitment. Brood production was not affected
by the addition of pollen, but moderately infested colonies were rearing significantly less brood by the end of the experiment
than lightly infested colonies. Furthermore, the efficiency with which colonies converted pollen to brood decreased as the
pollen storage level decreased and the infestation level increased. The results of this study may indicate that honey bee
colonies adaptively alter brood-production efficiency in response to parasitic infestations and seasonal changes.
Received: 3 May 1999 / Received in revised form: 14 September 1999 / Accepted: 25 September 1999 相似文献
45.
A. Dornhaus E. J. Collins F.-X. Dechaume-Moncharmont A. I. Houston N. R. Franks J. M. McNamara 《Behavioral ecology and sociobiology》2006,61(1):151-161
Information about food sources can be crucial to the success of a foraging animal. We predict that this will influence foraging decisions by group-living foragers, which may sacrifice short-term foraging efficiency to collect information more frequently. This result emerges from a model of a central-place forager that can potentially receive information on newly available superior food sources at the central place. Such foragers are expected to return early from food sources, even with just partial loads, if information about the presence of sufficiently valuable food sources is likely to become available. Returning with an incomplete load implies that the forager is at that point not achieving the maximum possible food delivery rate. However, such partial loading can be more than compensated for by an earlier exploitation of a superior food source. Our model does not assume cooperative foraging and could thus be used to investigate this effect for any social central-place forager. We illustrate the approach using numerical calculations for honeybees and leafcutter ants, which do forage cooperatively. For these examples, however, our results indicate that reducing load confers minimal benefits in terms of receiving information. Moreover, the hypothesis that foragers reduce load to give information more quickly (rather than to receive it) fits empirical data from social insects better. Thus, we can conclude that in these two cases of social-insect foraging, efficient distribution of information by successful foragers may be more important than efficient collection of information by unsuccessful ones. 相似文献
46.
Strike-induced chemosensory searching by a teiid lizard,the golden tegu (Tupinambis nigropunctatus) 总被引:1,自引:0,他引:1
William E. Cooper Jr. 《Chemoecology》1993,4(2):79-85
Summary Strike-induced chemosensory searching (SICS) is experimentally demonstrated in a teiid lizard,Tupinambis nigropunctatus. SICS consists of a concurrent post-strike elevation in tongue-flick rate (PETF) and searching movements after voluntary release or escape of bitten prey or removal of prey from the predator's mouth. The results are consistent with previous data showing that PETF and/or SICS occur in all families of scleroglossan lizards and snakes and all families of actively foraging lizards yet studied. The relatively short duration of SICS (2 min) in a lizard having lingual and vomeronasal structure highly specialized for chemosensory sampling and analysis suggests that phylogenetic and ecological factors may be more important than morphology in determining the duration. The greatest known durations occur only in the presumably monophyletic clade containing varanoid lizards and snakes, all of which have highly developed chemical sampling and chemoreceptor apparatus, but in addition feed on prey that has a high probability of being relocated by prolonged scent-trailing. Because only active foragers move through the habitat while tongue-flicking and exhibit lingually mediated prey chemical discrimination, only active foragers may be expected to use SICS. SICS would appear to be useless to an ambush forager and might disrupt its defensive crypticity, rendering it more detectable to predators and prey. Therefore, it may be predicted that SICS is adaptively adjusted to foraging mode. 相似文献
47.
Mercury is recognized internationally as an important pollutant since mercury and its compounds are persistent, bioaccumulative and toxic, and pose human and ecosystem risks. A critical aspect of mercury cycling is its bioaccumulation, mainly as methylmercury, along the aquatic food web resulting in high risk of human exposure through contaminated fish consumption. Since lake acidity (pH) and mercury methylation are correlated, control of lake pH through lake liming is a possible option to mitigate mercury bioaccumulation. This work proposes to use optimal control theory to derive time-dependent lake liming strategies for a tighter control of lake pH. Since the behavior of the freshwater ecosystems such as lakes is often associated with considerable uncertainties, a robust and realistic analysis should incorporate such uncertainties. This work models the time-dependent uncertain variations in the basic lake pH value and derives the liming profiles in the presence of such seasonal pH fluctuations. Established techniques from real options theory are employed for modeling the uncertainty as a stochastic process, and stochastic optimal control is used for deriving liming profiles. The approach is critically evaluated through applications to various case study lakes. Considering the substantial costs associated with liming operations, the work formulates a multi-objective problem highlighting the tradeoff between accurate pH control and liming cost. The results of the control problem solution are also compared with heuristics based liming. The results, while highlighting the success of using time-dependent liming, put forth certain interesting aspects that might be helpful to a decision maker. The analysis is expected to make liming operation more reliable, thereby presenting one more tool to manage the harmful effects of mercury pollution. 相似文献
48.
The paper develops a general framework for the analysis of environmental shocks in growing economies. Endogenous capital investments allow identifying the dual role of capital as a buffer against shocks and a source of pollution. We study the effects of recurring natural disasters on optimal growth and efficient environmental policies. Emissions may cause continuous fluctuations, entail discrete and recurring jumps, or trigger so-called “tipping points” with large costs to the economy. Closed-form solutions are provided for all the model variants. We discuss possible applications in environmental economics and identify current research gaps. 相似文献
49.
The response of an insect parasitoid,Ormia ochracea (Tachinidae), to the uncertainty of larval success during infestation 总被引:4,自引:0,他引:4
Ormia ochracea is a parasitoid fly which lays its larvae on its hosts, the field crickets Gryllus integer and Gryllus rubens, in two distinct modes: (1) directly on the host and (2) around the host. In the field, 12.7% of male crickets were parasitized and 3.2% were super-parasitized. Despite the disadvantages of parasitizing infested hosts, there was no evidence that O. ochracea avoided superparasitism. This and other experiments suggest that the host assessment ability of O. ochracea is less than that reported for many hymenopteran parasitoids. by manipulating the number of larvae in each cricket, we determined that four to five larvae per host resulted in the largest number of adult flies. However, as larval number per host increased from one to six, pupal size, and hence adult size, declined. In the field, hosts were found with a mean of 1.7 ± 1.0 (SD) larvae per cricket, suggesting that there may be some selection pressure against larger clutch sizes. Nevertheless clutch sizes larger than the host can support were sometimes found in the field. During the first mode of larviposition, gravid flies deposited no more than three larvae directly onto the host. Larvae deposited directly on the host had a high probability of infesting it. During the second mode of larviposition, gravid flies laid a larger number of larvae around the host (6.1 ± 5.2). Larvae that were laid around the host were less likely to infest a cricket than were larvae that were deposited directly onto it. O. ochracea is unique in that its two different modes of larviposition have different probabilities of larval success. Even though the success rate for larvae laid during the second mode of larviposition was low, the possibility of parasitizing more hosts appears to have selected for flies laying more larvae (e.g. increasing clutch size) than is optimal if all the larvae successfully entered a single host. 相似文献
50.
Central-place foraging theory has been unable to explain the load selection behavior of leaf-cutting ants (Atta spp., Attini: Formicidae). We suggest that this is due to incomplete consideration of the sequence of behaviors involved in resource acquisition by these ants. Unlike most central-place foragers, leaf-cutting ants do not return to their nests with food. Instead, the leaf fragments they gather must be processed within the nest to convert them to substrate for fungal gardens. We have shown previously that leaf fragment size affects the rate of distribution and processing of leaf tissue inside laboratory nests of Atta colombica. Including these tasks in the calculation of foraging rate may help explain load selection and other features of central-place foraging by Atta colonies. Here we develop a mathematical model of the complete sequence of external and internal tasks that lead to addition of substrate to fungal gardens. Using realistic parameter values, the leaf fragment sizes predicted to maximize a colony's rate of foraging in this broad sense correspond well with the mean fragment sizes actually collected by Atta colonies in the field. The optimal fragment size for global performance in the model is below the size that would maximize the delivery rate by above-ground foragers. The globally optimal size also fails to maximize the rate of either fragment distribution or fragment processing within the nest. Our results show how maximum collective performance of an ensemble of linked tasks may require behavior that would appear suboptimal in a piecemeal analysis of tasks. 相似文献