首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   4篇
  国内免费   14篇
废物处理   7篇
环保管理   3篇
综合类   31篇
基础理论   23篇
污染及防治   85篇
评价与监测   15篇
社会与环境   3篇
  2020年   3篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   23篇
  2012年   7篇
  2011年   16篇
  2010年   8篇
  2009年   9篇
  2008年   14篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
31.
This article reports the successful isolation and molecular characterisation of nine different phenol-tolerant and polycyclic aromatic hydrocarbon (PAH)-degrading Gram-positive bacterial species of diverse genera from the effluents of various industries. Based on similarity matrix studies, isolates Corynebacterium sp. DST1, Lysinibacillus sp. and Planococcus sp. showed<97% similarity, suggesting the possibility of new species in their respective genera.  相似文献   
32.
从2006年6月至2007年6月期间采集了北京市区的降尘和大气TSP,分析了其中的PAHs和降尘的粒度。降尘颗粒大部分在100μm以下,体积平均径和中位径D50的范围分别为18.89-53.117μm和11.59-28.98μm。全年降尘平均沉降通量为0.451 9 t/(km2.d),冬季高,夏秋季低;∑16PAHs的沉降通量平均为4.76 g/(km2.d),冬季高,夏季低,与同期的大气SO2的API指数显著相关。TSP中的∑16PAHs与降尘中的∑16PAHs具有显著的相关关系,成分谱一致。PAHs的沉降速率变化范围为0.004-5.46 cm/s,夏季高、冬季低。交通沿线∑16PAHs的沉降通量远远高于非交通线的沉降通量。  相似文献   
33.
提出了基于人体健康风险的土壤修复目标的制定方法和程序,并以上海市某重大工程多环芳烃污染土壤处理后再利用工程为例,模拟了多环芳烃在处置场地上的多介质迁移途径及人体暴露场景。模拟结果显示,填埋场污染土壤苯并(a)芘(该污染物毒性因子高,毒性强,致癌风险相对较大)经口摄入和皮肤接触途径最大致癌暴露量分别为1.89×10-6和0.93×10-6mg.kg-1.d-1,人体最大致癌风险水平分别为1.38×10-5和6.79×10-6,超出了中国规定的单致癌污染物的可接受风险水平(≤10-6)。苯并(a)芘呼吸吸入途径最大致癌暴露量为7.79×10-10mg.m-3,人体最大致癌风险水平为6.86×10-10。基于场地的特征条件和参数,以保护人体健康为目的,确定了再利用作为填埋场中层覆土的土壤中5种多环芳烃污染物的修复目标限值(w,mg.kg-1)分别为:苯并(a)芘,0.994;二苯并(a,h)蒽,0.995;苯并(a)蒽,9.95;苯并(b)荧蒽,9.95;苯并(k)荧蒽,99.5。  相似文献   
34.
气溶胶中多环芳烃的污染源识别方法   总被引:30,自引:1,他引:30       下载免费PDF全文
文章评述了气溶胶中多环芳烃污染源类型识别的几种方法,即:比值法、轮廓图法、特征化合物法和多元统计方法等.比值法简单可行,应用较多,但常因苯并(a)芘的不稳定性而带来误差,建议与轮廓图法、特征化合物法等配合使用,多元统计法要求样品数多,并且运算复杂,目前应用尚不多见,但其潜力很大。   相似文献   
35.
We selected the Guanting Reservoir in Beijing, China as a case where an industrial area locates on the upwind corner to study the influence of human activities and natural processes on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Soil PAH concentrations in the study area follow a log-normal probability distribution function, suggesting that distribution of PAH in soils was affected by human activities. Distribution of PAHs in soils was significantly affected by the point source that high PAH concentrations were observed in near industrial area with an obvious declining trend from the northwest to the southeast which was the prevailing wind direction in this area. Away from the influence of point source, distribution of PAHs in soils was found to significantly correlate with total organic carbon content, while the influences of agricultural land uses and type of soil texture on the total soil PAHs contents and ring compositions were quite limited. The results can provide some evidences and data on the pollutant accumulation in drink water protection area influenced by natural processes and human activities.  相似文献   
36.
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.  相似文献   
37.
Polycyclic aromatic hydrocarbons (PAH) were analysed in 23 soil samples (0–10 cm layer) from the Swiss soil monitoring network (NABO) together with total organic carbon (TOC) and black carbon (BC) concentration, as well as some PAH source diagnostic ratios and molecular markers. The concentrations of the sum of 16 EPA priority PAHs ranged from 50 to 619 μg/kg dw. Concentrations increased from arable, permanent and pasture grassland, forest, to urban soils and were 21–89% lower than median numbers reported in the literature for similar Swiss and European soils. NABO soils contained BC in concentrations from 0.4 to 1.8 mg/g dw, except for two sites with markedly higher levels. These numbers corresponded to 1–6% of TOC and were comparable to the limited published BC data in soil and sediments obtained with comparable analytical methods. The various PAH ratios and molecular markers pointed to a domination of pyrogenically formed PAHs in Swiss soils. In concert, the gathered data suggest the following major findings: (1) gas phase PAHs (naphthalene to fluorene) were long-range transported, cold-condensated at higher altitudes, and approaching equilibrium with soil organic matter (OM); (2) (partially) particle-bound PAHs (phenanthrene to benzo[ghi]perylene) were mostly deposited regionally in urban areas, and not equilibrated with soil OM; (3) Diesel combustion appeared to be a major emission source of PAH and BC in urban areas; and (4) wood combustion might have contributed significantly to PAH burdens in some soils of remote/alpine (forest) sites.  相似文献   
38.
ABSTRACT

Phenanthrene is a toxic and mutagenic pollutant that can cause severe environmental and human health issues. The bioremediation of these polyaromatic hydrocarbons (PAHs) is possible with a biosurfactant by enhancing hydrophobicity. In this study, the production of a biosurfactant by Bacillus pumilus 1529 and its effects on the phenanthrene biodegradation pathway were examined. Biosurfactant production was determined using hemolytic activity, emulsification index, and surface tension. For phenanthrene metabolite detection, samples at 0, 7, 14, and 21 incubation days were analysed by gas chromatography-mass (GC-mass) spectrometry. The results showed that Bacillus pumilus 1529 can reduce surface tension to 22.83?±?1.1?mN?m?1. Furthermore, the GC-mass spectrometry analysis showed that 1-hydroxy-2-naphthoic acid, benzaldehyde, o-phthalic acid, and phenylacetic acid were notable phenanthrene metabolites produced during phenanthrene biodegradation. Biodegraded phenanthrene and its metabolites have a less toxic effect on the germination of safflower seeds than non-biodegraded phenanthrene. The IC50 of phenanthrene on seed germination after biodegradation was increased to approximately 113?mg?L?1. In general, biodegradation aided by biosurfactant producing bacteria contributed to turning the toxic phenanthrene into less harmful metabolites with lower phytotoxicity effects, indicating that its application in the bioremediation of PAHs is promising.  相似文献   
39.
K. -W. Schramm 《Chemosphere》1994,28(12):2151-2171
A mathematical model UNITRISK which can be used for screening purposes and risk ranking was set up to calculate relative risk values of single chemicals and mixtures of chemicals towards single or mixtures of organisms via contamination of air, water, soil and food dose. The concentration values are calculated by applying the fugacity concept or a dose must be defined. The dose-response is assumed to be linear versus concentration and degradative processes are not considered which is the worst case. The assumption that equilibria between the environmental phases exist is simplifying the model and is also representing the worst case. A mean risk factor is calculated which is 1 if the endpoint values (LC50, LD50, ADI, etc.) are exceeded for the investigated organisms and man.  相似文献   
40.
本文报导了大气颗粒物中多环芳烃的一种测定方法和结果。颗粒物预处理方法是:超声萃取,抽滤,减压蒸发浓缩,硅胶柱净化,再浓缩,定容溶解。用高效液相色谱法分离和鉴定。对西南石油学院5个功能区冬季大气颗粒物中的苯并(a)芘等9种多环芳烃的分布状况进行了实测,苯并(a)芘平均含量为26ng/m~3,为国外一些大城市冬季值的三倍,为国内一些大城市冬季污染值的二分之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号