Computer display technology is currently in a state of transition, as the traditional technology of cathode ray tubes is being replaced by liquid crystal display flat-panel technology. Technology substitution and process innovation require the evaluation of the trade-offs among environmental impact, cost, and engineering performance attributes. General impact assessment methodologies, decision analysis and management tools, and optimization methods commonly used in engineering cannot efficiently address the issues needed for such evaluation. The conventional Life Cycle Assessment (LCA) process often generates results that can be subject to multiple interpretations, although the advantages of the LCA concept and framework obtain wide recognition. In the present work, the LCA concept is integrated with Quality Function Deployment (QFD), a popular industrial quality management tool, which is used as the framework for the development of our integrated model. The problem of weighting is addressed by using pairwise comparison of stakeholder preferences. Thus, this paper presents a new integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), to assess the environmental behavior of alternative technologies in correlation with their performance and economic characteristics. Computer display technology is used as the case study to further develop our methodology through the modification and integration of various quality management tools (e.g., process mapping, prioritization matrix) and statistical methods (e.g., multi-attribute analysis, cluster analysis). Life cycle thinking provides the foundation for our methodology, as we utilize a published LCA report, which stopped at the characterization step, as our starting point. Further, we evaluate the validity and feasibility of our methodology by considering uncertainty and conducting sensitivity analysis. 相似文献
This paper presents ArcGIS‐SWAT, a geodata model and geographic information system (GIS) interface for the Soil and Water Assessment Tool (SWAT). The ArcGIS‐SWAT data model is a system of geodatabases that store SWAT geographic, numeric, and text input data and results in an organized fashion. Thus, it is proposed that a single and comprehensive geodatabase be used as the repository of a SWAT simulation. The ArcGIS‐SWAT interface uses programming objects that conform to the Component Object Model (COM) design standard, which facilitate the use of functionality of other Windows‐based applications within ArcGIS‐SWAT. In particular, the use of MS Excel and MATLAB functionality for data analysis and visualization of results is demonstrated. Likewise, it is proposed to conduct hydrologic model integration through the sharing of information with a not‐model‐specific hub data model where information common to different models can be stored and from which it can be retrieved. As an example, it is demonstrated how the Hydrologic Modeling System (HMS) ‐ a computer application for flood analysis ‐ can use information originally developed by ArcGIS‐SWAT for SWAT. The application of ArcGIS‐SWAT to the Seco Creek watershed in Texas is presented. 相似文献
ABSTRACT: Rainstorms which exceed the design capacity of conveyance systems and cause extensive damage to structures and property, occur frequently in Alberta. After such a severe storm, an early and quick assessment of the storm's location and magnitude and the corresponding frequency for various duration (storm intensity-duration curve) is often required to estimate the damage. The storm intensity-duration curve is produced with information obtained from a sparse network of recording raingages, thus, creating a high degree of uncertainty in the result. Short-duration precipitation is usually quite variable in Alberta; hencea very dense network of recording precipitation stations would be required to provide precise measurements of the storm intensity-duration curve at all locations. Such a dense network does not exist in Alberta; it would be very expensive to install, maintain, and thus difficult to justify financially. One solution for obtaining a large amount of closely spaced in-intensity-duration values is to use weather radar. Using weather radar data, intensity-duration curves could be produced routinely for any set of prespecified locations. The radar data thus have the potential for facilitating the identification of the return period of rainfall events quickly, cheaply, and precisely when the long-term intensity-duration curves are available. As a pilot project to demonstrate the feasibility of the method and the potential of the radar data, computer software was developed to derive from archived radar data, intensity-duration values for up to a 2,500 2 area for a given storm. 相似文献
ABSTRACT: The growing demands by the public for a more active role in planning have recently generated considerable interest among researchers and planners in the subject of public involvement techniques. Numerous surveys have found that standard public participation techniques (e.g., public hearings) by themselves are considered inadequate. Several techniques that have potential for overcoming some of the limitations of standard public involvement techniques have recently been developed. This paper describes several of these new techniques and analyzes each of them in terms of their potential utility in water resources planning. 相似文献
Objective: The objective of this study is to develop a novel algorithm on a mobile system that can warn drivers about the possibility of a collision with a pedestrian. The constraints of the algorithm are near-real-time detection speed and a good detection rate.
Method: Histogram of gradients (HOG)-based detection is widely used in pedestrian safety applications; however, it has low detection speed for real-time systems. Hence, it has no direct usage for mobile systems. In order to achieve near-real-time detection speed, partial Haar transform predetections are applied to an image before HOG detection. The partial and HOG detections are merged and a score-based confidence level is defined for the final detection phase. In this way, the outcome is prioritized and different warning levels can be issued to warn the driver before a possible pedestrian collision.
Results: The proposed algorithm provides an increase in detection speed (from 46 to 76 fps) and detection rate (from 80 to 91%) with respect to HOG-based pedestrian detection. It also improves confidence of the results by multidetection merging and score assignment to detections.
Conclusions: Performance improvement of the algorithm is compared with respect to state-of-the-art detectors/algorithms. Based on the detection rate and detection speed performance, it can be concluded that the proposed algorithm is suitable to be used for mobile systems to warn drivers about the possibility of collision with a pedestrian. 相似文献