首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   6篇
  国内免费   17篇
安全科学   11篇
废物处理   3篇
环保管理   61篇
综合类   113篇
基础理论   64篇
污染及防治   84篇
评价与监测   19篇
社会与环境   12篇
灾害及防治   3篇
  2024年   3篇
  2023年   4篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   18篇
  2012年   15篇
  2011年   42篇
  2010年   27篇
  2009年   39篇
  2008年   39篇
  2007年   14篇
  2006年   15篇
  2005年   10篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   6篇
  1996年   13篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
121.
In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m2/d, 97/112 mg/m2/d, and 1167/1342 mg/m2/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique.  相似文献   
122.
以三种树叶焚烧测定结果为例,分析了植物燃烧过程中产生的二类。研究结果表明,不同植物焚烧排放的二类浓度不同,含氯高时排放二类浓度也较高。二类对生态环境和人类健康有巨大的危害,分析二类污染物的农业面源情况,对于进一步有效控制和降低二类的排放,有重要的现实意义。  相似文献   
123.
Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha−1 yr−1. Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen × ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation.  相似文献   
124.
Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems.  相似文献   
125.
The dynamics of heavy metals in plant-soil interactions   总被引:1,自引:0,他引:1  
The effects of soil contamination by heavy metals are studied by a mathematical interaction model, validated by experimental results. The model relates the dynamics of uptake of heavy metals from soil to plants. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality. Data are taken from soil with Cd, Cu and Zn treatments for alfalfa, lettuce, radish and Thlaspi caerulescens, measuring the concentrations in the aboveground biomass of plants. At low concentrations, the effects of heavy metals are moderate, and the dynamics seem to be linear. However, increasing concentrations exhibit nonlinear behaviors.  相似文献   
126.
In northeastern America, thousands of kilometers of utility rights-of-way (ROWs) have to be managed to prevent the establishment of a tall vegetation cover that does not comply with safety and maintenance regulations. Recent decades have seen the emergence of ecologically based vegetation control strategies to reduce environmental impacts as well as maintenance costs. One such strategy is to take advantage of competitive herbaceous covers to limit tree invasion. This approach, however, as well as its fundamental underlying principles, has been little scrutinized. In this article, (1) we present the main ecological concepts supporting the use of a herbaceous cover to limit tree invasion, emphasizing naturally forested ecosystems of northeastern America. They include reported evidence of stable plant communities and an overview of potential underlying mechanisms of inhibition. (2) We then review field applications, specifically testing the ability of seeded herbaceous covers to control tree invasion in ROWs. (3) We discuss unresolved issues relevant to management and research. The available evidence suggests that seeding herbaceous covers in ROWs can help control tree invasion, but many issues still limit broad-scale applications. The various interactions that govern plant community dynamics are far from being fully understood, so selecting species still largely depends on an empirical approach. Patterns of resistance to tree invasion must be investigated over a wide range of spatial, historical, and environmental contexts to determine effective management and seeding practices that will lead to broad-scale applications. We suggest establishing communities rather than single dominant species and using as much as possible native species to limit risks of invasion.Published online  相似文献   
127.
This second part of the study concerned the plant cover, gas contents, and soil properties of the side slope area of the landfill, which is not protected against gas infiltration. Five different sites on the slope and a control site outside the landfill were chosen, and pipes were installed in the region. Gas contents were tested, and plant cover recorded by quadrat analysis Over 20 species of grasses, herbs, and vines were present on the slope The relative adaptabilities of the species were ranked according to the abundance of the plants Plant cover was found to be negatively correlated with landfill gas contents. The landfill soil had elevated contents of nitrogen, organic carbon, and extractable metals Total nitrogen, ammonia nitrogen, and extractable lead were further identified to be negatively correlated while available phosphate was positively correlated with plant cover  相似文献   
128.
A review of major factors influencing plant responses to recreation impacts   总被引:3,自引:0,他引:3  
This article reviews some of the more important factors found to influence the susceptibility of plants to trampling impacts associated with recreational use of natural areas. A three-way interaction mediates plant responses to impacts: plant x environment x stress level(s). Plant responses vary in part according to the genetic constitution of the plant, life and growth form, the adaptive flexibility of the plant, and anatomical differences inherent to growth habit and morphology. Other factors that influence plant sensitivities to impacts are the habitat environments in which plants grow, since a number of conditions such as moisture excesses or deficiencies, nitrogen or oxygen starvation, late frosts, etc., cause physiological injury and may increase plant sensitivity to impacts. Among the environmental factors that may increase or lessen plant sensitivities to impacts are soil moisture levels, canopy density, elevation, aspect, microclimate, soil drainage, texture, fertility and productivity. Seasonal influences also bear consideration since environmental changes and phonological and physiological events are mediated by time of year. Stresses are caused by both direct and indirect forms of impact and vary according to season of use, frequency and amount of use, and the type of activity. These interactions are further complicated by evidence that inter- and intraspecific competition, antagonism, and commensalism may influence differences in the sensitivity of plant communities to impacts.  相似文献   
129.
大气污染影响下凯里植物氮、硫含量分析   总被引:1,自引:0,他引:1  
对大气污染影响下凯里植物氮、硫质量分数进行测定分析。结果表明:植物的氮质量分数为0.8%~2.8%,平均值为1.5%;硫质量分数为0.4%~1.4%,平均值为0.8%。植物的氮、硫质量分数都高于对照点植物,为对照点植物的1.4倍、1.9倍,表明该区植物已受到了大气污染的影响。不同植物间的氮、硫质量分数差异达到3.5倍和2.5倍。不同类型植物的氮、硫质量分数也存在差异,氮质量分数中:藤本>草本>灌木>乔木,硫质量分数中:藤本>草本>乔木>灌木;落叶植物的氮、硫质量分数>常绿植物的氮、硫质量分数。不同研究点植物的氮、硫质量分数存在差异,均表现为:玻璃厂>火电厂>水泥厂。  相似文献   
130.
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号