首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   26篇
  国内免费   221篇
安全科学   13篇
废物处理   9篇
环保管理   73篇
综合类   373篇
基础理论   178篇
污染及防治   166篇
评价与监测   24篇
社会与环境   24篇
灾害及防治   3篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   5篇
  2020年   11篇
  2019年   17篇
  2018年   21篇
  2017年   24篇
  2016年   23篇
  2015年   20篇
  2014年   24篇
  2013年   81篇
  2012年   45篇
  2011年   84篇
  2010年   53篇
  2009年   66篇
  2008年   68篇
  2007年   47篇
  2006年   43篇
  2005年   25篇
  2004年   29篇
  2003年   24篇
  2002年   11篇
  2001年   14篇
  2000年   21篇
  1999年   16篇
  1998年   11篇
  1997年   12篇
  1996年   18篇
  1995年   2篇
  1994年   8篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1975年   1篇
排序方式: 共有863条查询结果,搜索用时 863 毫秒
521.
人工湿地处理生活污水研究--以深圳石岩河人工湿地为例   总被引:30,自引:2,他引:30  
对深圳石岩河人工湿地运行以来的污水净化效果、植物生长状况和处理系统存在的问题等进行了分析和研究.结果表明,湿地运行7个月,污水处理量达1.8×106 m3,对污水中CODCr、BOD5、SS、TP、TN和NH3-N的去除率分别为87.1%、94.1%、57.5%、91.4%、47.8%和74.8%.对植物氮磷的分析表明,植物氮质量分数在1.31%~2.25%之间,磷质量分数在0.40% ~ 1.15%之间,植物氮积累量为116.2 ~ 417.1 kg·hm-2,磷积累量为70.7~178.3 kg·hm-2.与工程总处理量相比,植物吸收的氮磷量仍占很小部分,平均分别为4.90%和3.78%.此外,对工程运行状况的观测发现,人工湿地存在工程表面板结、内部堵塞及植物管理等问题,板结程度与植物覆盖度成反比.  相似文献   
522.
农田施用水葫芦对水稻磷素吸收利用的影响   总被引:1,自引:0,他引:1  
为促进农田流失养分的循环利用,2009、2010年以粳稻品种运2645为供试材料,设计农田施用水葫芦(将晒干水葫芦按4 500 kg hm-2农田施用)、不施用水葫芦处理和施氮(N)量为120 kg hm-2(LN)、240 kg hm-2(NN)处理,研究其对水稻不同生育时期磷(P)素含量、吸收、分配和利用效率的影响.结果表明:1)农田施用水葫芦后,水稻不同生育时期植株含P率显著提高,各生育时期P素吸收量显著提高;2)农田施用水葫芦对水稻不同生育时期P素在茎鞘、叶片和穗中分配比例均无显著影响;3)农田施用水葫芦后,除够苗期外,水稻不同生育时期P素干物质生产效率极显著降低,P素籽粒效率显著降低,但P素收获指数无显著变化;4)农田施用水葫芦后,水稻产量显著提高;5)增施N肥后,水稻不同生育时期的植株P素含量和吸收量多得到显著或极显著的增加,P素干物质生产效率和P素籽粒生产效率多明显下降;6)水葫芦×N处理对稻株P素吸收利用多无显著互作效应;农田施用水葫芦使水稻植株含P率、P素吸收量显著提高,使P素干物质生产效率和P素籽粒生产效率多显著降低.  相似文献   
523.
对4个旱柳(Sailx matsudana)无性系8,10,18和22号进行了水培试验,研究了96h后旱柳对水中2,4-二氯苯酚(2,4-DCP)的去除和吸收积累能力. 结果表明:旱柳可促进2,4-DCP降解,在96 h内4个旱柳无性系8,10,18和22号对20 mg/L的2,4-DCP去除率分别为56.63%,59.85%,55.17%和56.90%. 将4个旱柳无性系分别曝露在10,20和30 mg/L的2,4-DCP环境中,随着ρ(2,4-DCP)的增大,根系和地上部分中的w(2,4-DCP)增加,且根>茎叶;10号无性系地上部分未检测出2,4-DCP且其根系中的w(2,4-DCP)显著低于其他无性系;22号根系和地上部分的w(2,4-DCP)均显著高于其他无性系.水溶液中ρ(2,4-DCP)小于20 mg/L时,2,4-DCP对旱柳生长无显著抑制作用. 不同旱柳无性系对2,4-DCP均具有一定的吸收蓄积能力.   相似文献   
524.
为探究不同土壤改良措施对豫中烟田甲烷(CH4)吸收规律的影响,以中烟100为供试品种,利用静态密闭暗箱法对烤烟-土壤生态系统CH4吸收速率进行了周年测定.采用随机区组试验,共设置5个处理:不施肥(NF)、仅施用氮磷钾(NPK)、氮磷钾+种植并翻压黑麦草(NPKG)、氮磷钾+小麦秸秆还田(NPKS)和氮磷钾+施用烟秆生物炭(NPKB).结果表明,2020年所有处理CH4排放速率为-98.45~-13.50 μg·m-2·h-1,表明试验田是CH4的吸收汇,CH4的吸收速率随着温度的升高而增加,呈现明显的季节变化规律.在烤烟生育期,CH4吸收速率与土壤孔隙含水率(WFPS)和土壤硝态氮含量均呈负相关,与土壤温度呈正相关.在休闲期,影响CH4吸收速率的主要因素是土壤温度.与NPK相比,生育期NPKB处理的土壤孔隙含水率显著提高13.63%,NPKG、NPKS和NPKB处理的硝态氮和铵态氮含量均显著升高.所有处理CH4全年吸收总量为3.25~3.83 kg·hm-2,NPKG、NPKS和NPKB处理CH4吸收总量较NPK处理分别显著降低了6.59%、6.82%、12.49%.添加有机物料能够显著提高 烟叶产量,其中,NPKG处理的烟叶产量最高.综合以上结果,该地区采用种植并翻压黑麦草的土壤改良措施较为合适.  相似文献   
525.
Soil-borne plant pathogens are responsible for causing many crop plant diseases, resulting in significant economic losses. Compost application to agricultural fields is an excellent natural approach, which can be taken to fight against plant pathogens. The application of organic waste products is also an environmentally friendly alternative to chemical use, which unfortunately is the most common approach in agriculture today. This review analyses pioneering and recent compost research, and also the mechanisms and mode of action of compost microbial communities for reducing the activity of plant pathogens in agricultural crops. In addition, an approach for improving the quality of composts through the microbial communities already present in the compost is presented. Future agricultural practices will almost definitely require integrated research strategies to help combat plant diseases.  相似文献   
526.
巢湖十五里河沉积物磷吸收潜力及对外源碳的响应   总被引:2,自引:2,他引:0  
李如忠  鲍琴  张瑞钢  陈慧 《环境科学》2019,40(6):2730-2737
2017年7月(夏季)和2018年1月(冬季),在巢湖十五里河干流的城乡梯度方向选择5个代表性采样点位,采集表层沉积物样,利用实验室培养法,测算沉积物磷的总吸收潜力SPU_(live)、非生物吸收潜力SPU_(kill)和生物吸收潜力SPU_(biotic),评估不同外加碳源(乙酸钠、葡萄糖及两者的混合溶液)对SPU_(biotic)的影响水平.结果表明,十五里河沉积物SPU_(live)存在时空差异性,且表现为SPU_(kill)高于SPU_(biotic);未添加碳源时,夏季和冬季的SPU_(kill)均值分别为3.016μg·(g·h)~(-1)和3.368μg·(g·h)~(-1),SPU_(biotic)均值分别为0.784μg·(g·h)~(-1)和0.323μg·(g·h)~(-1),夏、冬两季的非生物吸收潜力存在显著差异性;添加外源碳后,不仅SPU_(biotic)有了较大幅度的提升,生物因素在沉积物磷吸收中的贡献率水平也有了明显提高,且两者均表现为添加乙酸钠效果最显著,添加葡萄糖效果次之,混合碳源的效果相对较弱.由沉积物磷的生物吸收对外源碳的响应情况,可以判定十五里河沉积物磷吸收存在一定程度的碳限制性.  相似文献   
527.
本实验目的是研究草木灰对吸附亚甲基蓝的去除效果,探讨了亚甲基蓝初始量、吸附时间、pH值等对吸附效果的影响,并运用伪一级、伪二级反应动力学模型和Laugmuir、Freundlich等温线模型进行拟合。结果表明,草木灰对亚甲基蓝溶液的吸附在5 min~30 min速率比较快,约在65 min内达到吸附平衡,pH越大越有利于吸附,浓度在5mg/L时草木灰对亚甲基蓝的吸附最佳。与伪二级动力学曲线模型拟合效果较好,由Laugmuir等温线模型计算得出理论最大吸附容量Qm为2.275 mg/g,吸附性能优异。  相似文献   
528.
为揭示源头溪流氮磷耦合吸收作用机制,选择NaCl和NaBr为保守型示踪剂、KNO3和KH2PO4为添加营养盐,于2017年10月~2018年3月在合肥城郊的2条源头溪流,开展5次由单、双营养盐添加构成的示踪试验,利用TASCC技术方法,分别以Michaelis-Menten(M-M)方程和双营养耦合吸收曲面模型拟合营养盐吸收动力学过程.结果表明,双添加试验的NO3-N、PO4-P吸收速率均明显高于单添加情形,意味着溪流中NO3-N与PO4-P吸收存在相互促进作用;双营养耦合吸收响应曲面直观展示了氮、磷营养盐不同浓度水平及浓度比情形下吸收速率的演化趋势,诠释了较低浓度水平下溪流NO3-N(或PO4-P)吸收速率随PO4-P(或NO3-N)可利用量增加而增大的作用机制;两种动力学模型在NO3-N、PO4-P最大吸收速率拟合结果上均存在不同程度的偏差,其中M-M方程低估了Umax-N和Umax-P,相应幅度分别达3.91%~16.11%、3.23%~23.63%.  相似文献   
529.
不同浓度镧处理对铅胁迫下玉米生长和铅吸收的影响   总被引:2,自引:1,他引:1  
王起凡  郭伟  常青  潘亮  周昕南  杨亮  李娥 《环境科学》2019,40(1):480-487
采用温室盆栽试验的方法,研究不同浓度的镧处理(0、50、200和800 mg·kg~(-1))对中度铅胁迫下(200 mg·kg~(-1))玉米生长、矿质营养元素吸收、C∶N∶P生态化学计量比及Pb和La吸收的影响,探讨土壤-植物系统中稀土重金属的相互作用,旨在为稀土矿区稀土重金属复合污染土壤的治理提供基础数据和理论依据.结果表明,随着外源La浓度的增加土壤中乙酸铵-EDTA提取态La的浓度显著增加,而乙酸铵-EDTA提取态Pb的浓度显著降低;玉米地上部干重显著降低了17.90%~81.17%,根冠比显著增加了21.74%~86.96%;随着土壤中La浓度的增加根部P含量显著降低了19.16%~89.68%,La浓度为200 mg·kg~(-1)和800 mg·kg~(-1)时,地上部P和N含量分别显著降低了65.51%~91.98%和48.27%~76.58%;随着土壤中La浓度的增加,植株C∶P、N∶P和植株La浓度显著增加,地上部和根部Pb浓度分别显著增加了52.61%~99.01%和15.99%~44.34%;随着La浓度的升高显著降低了玉米植株K、Ca和Mg的含量.结果初步证明,在稀土-重金属复合污染土壤中,稀土元素的存在加剧了重金属对植物生长的毒害效应及其所引发的生态风险问题,应进一步深入研究稀土对植物吸收重金属的影响及作用机制.  相似文献   
530.
小麦根系吸收萘、菲、芘的动力学特征   总被引:3,自引:0,他引:3  
研究植物根系吸收多环芳烃的动力学特征对控制其进入食物链、保障农产品安全有重要意义.因此,本文采用水培方法,研究了小麦根系对萘、菲、芘吸收的动力学机制.结果表明,小麦根系对水培环境中的萘、菲和芘均有明显的吸收和累积作用,且吸收量均随时间延长而增加,整个吸收过程可分为快速吸收和慢速吸收两个阶段.小麦根系对萘、菲和芘的吸收速率快慢表现为芘>菲>萘,且萘、菲、芘吸收的动力学曲线可用米氏方程表征,相应的Km值分别为759.30、12.89和3.59μmol·L-1,即小麦对萘、菲、芘的亲和力大小为芘>菲>萘,结果与其Kow值大小顺序一致.小麦根系吸收萘、菲、芘均会导致营养液pH值升高,吸收单个萘、菲、芘分子产生的pH升高幅度表现为芘>菲>萘.上述结果显示,萘、芘的根系吸收特征与菲相似.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号