Emissions of Hg, Pb, and Cd to air aretransported over wide areas in Europe and deposited far awayfrom their sources. About 80% of the atmospheric depositionof these metals in south Sweden originate from emissions inother countries. As a result of the increased anthropogenicdeposition the concentrations of Hg, Pb, and Cd in the morlayer of forest soils have increased considerably, mainlyduring the 20th century. Although the atmosphericdeposition of these elements has declined during the mostrecent decades, the reduction of the input of Hg and Pb isnot sufficient to prevent a further accumulation. Theconcentrations of Hg and Pb are still increasing by ca. 0.5and ca. 0.2% annually in the surface layer of forest soils.In contrast, the Cd concentration is currentlydecreasing in a large part of Sweden as a result of bothdeposition decreases and enhanced leaching induced by soilacidification. The accumulation factors of Hg and Pb,especially in the forest topsoils of south Sweden, arealready above those at which adverse effects on soilbiological processes and organisms have been demonstrated instudies of gradients from local emission sources andlaboratory assessment. There are also indications of sucheffects at the current regional concentrations of Hg and Pbin mor layers from south Sweden, judging from observationsin field and laboratory studies. There is an apparent riskof Pb induced reduction in microbial activity over parts ofsouth Sweden. This might cause increased accumulation oforganic matter and a reduced availability of soil nutrients.At current concentrations of Hg in Swedish forest soils,effects similar to those of Pb are likely. Increasedconcentrations of these elements in organs of mammals andbirds have also been measured, though decreases have beendemonstrated in recent years, related to changes inatmospheric deposition rates. As a result of current andpast deposition in south Sweden, concentrations of Hg infish have increased about fivefold during the 20thcentury. This implies risks for human health, when fish frominland waters are used for food. Although the concentrationof Hg in fish has decreased ca. 20% during the last decade,probably as a result of the reduced deposition, the levelstill exceeds the general limit (0.5 mg kg-1) in about half(ca. 40 000) of the Swedish lakes. In order to reduceconcentrations in fish to the level recommended, and avoidfurther accumulation of Hg in soils, the atmosphericdeposition has to be reduced to ca. 20% of the current deposition rate. This can only be achieved by international co-operation. 相似文献
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources. 相似文献
● The main direct seal up carbon options and challenges are reviewed.● Ocean-based CO2 replacement for CH4/oil exploitation is presented.● Scale-advantage of offshore CCS hub is discussed. Carbon capture and storage (CCS) technology is an imperative, strategic, and constitutive method to considerably reduce anthropogenic CO2 emissions and alleviate climate change issues. The ocean is the largest active carbon bank and an essential energy source on the Earth’s surface. Compared to oceanic nature-based carbon dioxide removal (CDR), carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems. This review focuses on the recent state-of-the-art developments in offshore carbon storage. It first discusses the current status and development prospects of CCS, associated with the challenges and uncertainties of oceanic nature-based CDR. The second section outlines the mechanisms, sites, advantages, and ecologic hazards of direct offshore CO2 injection. The third section emphasizes the mechanisms, schemes, influencing factors, and recovery efficiency of ocean-based CO2-CH4 replacement and CO2-enhanced oil recovery are reviewed. In addition, this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCS hubs. Finally, the upsides, limitations, and prospects for further investigation of offshore CO2 storage are presented. 相似文献
Objective: A number of efforts have been conducted on travel behavior and transport fatalities at the neighborhood or street level, and they have identified different factors such as roadway characteristics, personal indicators, and design indicators related to transport safety. However, only a limited number of studies have considered the relationship between travel behavior indicators and the number of transport fatalities at the city level. Therefore, this study explores this relationship and how to fill the mentioned gap in current knowledge.
Method: A generalized linear model (GLM) estimates the relationships between different travel mode indicators (e.g., length of motorway per inhabitants, number of motorcycles per inhabitant, percentage of daily trips on foot and by bicycle, percentage of daily trips by public transport) and the number of passenger transport fatalities. Because this city-level model is developed using data sets from different cities all over the world, the impacts of gross domestic product (GDP) are also included in the model.
Conclusions: Overall, the results imply that the percentage of daily trips by public transport, the percentage of daily trips on foot and by bicycle, and the GDP per inhabitant have negative relationships with the number of passenger transport fatalities, whereas motorway length and the number of motorcycles have positive relationships with the number of passenger transport fatalities. 相似文献