全文获取类型
收费全文 | 436篇 |
免费 | 28篇 |
国内免费 | 238篇 |
专业分类
安全科学 | 31篇 |
废物处理 | 5篇 |
环保管理 | 35篇 |
综合类 | 453篇 |
基础理论 | 23篇 |
污染及防治 | 150篇 |
评价与监测 | 5篇 |
出版年
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 4篇 |
2020年 | 8篇 |
2019年 | 12篇 |
2018年 | 8篇 |
2017年 | 16篇 |
2016年 | 21篇 |
2015年 | 26篇 |
2014年 | 25篇 |
2013年 | 23篇 |
2012年 | 29篇 |
2011年 | 32篇 |
2010年 | 43篇 |
2009年 | 51篇 |
2008年 | 36篇 |
2007年 | 61篇 |
2006年 | 61篇 |
2005年 | 35篇 |
2004年 | 41篇 |
2003年 | 35篇 |
2002年 | 33篇 |
2001年 | 39篇 |
2000年 | 10篇 |
1999年 | 13篇 |
1998年 | 9篇 |
1997年 | 7篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 3篇 |
排序方式: 共有702条查询结果,搜索用时 0 毫秒
11.
SBR法短程深度脱氮过程分析与控制模式的确立 总被引:4,自引:1,他引:3
为了实现稳定的SBR法短程深度脱氮技术,考察了实际生活污水处理过程中pH值的变化规律及其影响因素.通过对生物脱氮过程机制和碳酸平衡过程的分析可知,pH值在氨氧化结束和反硝化结束时都会出现明显的变化点,对于采用SBR工艺处理有机物浓度较低、碱度适中的生活污水或城市污水的过程来说,采用pH值作为控制参数一方面可以保证出水水质达到TN<1 mg/L的深度脱氮效果;另一方面防止了过度曝气引起短程硝化率降低,对于短程深度脱氮的稳定起到了重要作用.在理论分析和试验研究的基础上建立了SBR法短程深度脱氮过程的实时控制策略,在控制策略中设置了18个可调节的变量,以适应不同的水质并保持控制策略的准确性.该控制策略的建立为开发短程深度脱氮的控制软件和控制系统奠定了基础. 相似文献
12.
在不同温度下,研究了流化填料分格式SBR工艺(简称MESBR工艺)与传统的SBR工艺的COD去除率,有机物降解速率,脱氮效果和污泥沉降性能。结果表明:MESBR系统温度下降到5℃时,COD的去除率基本稳定在90%以上,比传统SBR系统高出15%左右;MESBR系统与传统SBR系统的温度系数θ分别为1.021和1.045。温度由20℃下降至5℃时,传统SBR系统的TN和NH3-N去除率分别降低26.5%和20%,而MESBR系统分别降低18.6%和11%。传统SBR系统SVI值随温度变化较大,当温度下降到5℃时SVI值达到234.8 mL/g,而MESBR系统的SVI值没有明显的变化,基本维持在120~130 mL/g。 相似文献
13.
以絮状活性污泥为接种污泥,采用人工配制的模拟生活污水,分别在气提式序批反应器(SBAR)和序批式活性污泥反应器(SBR)中成功地培养出了成熟的好氧颗粒污泥.SBAR和SBR中的好氧颗粒污泥都具有稳定的基本形态结构,其微生物主要由杆菌和球菌组成,对COD的去除率可达到93%左右.对NH+4-N的去除率可达到98%以上.SBAR中好氧颗粒污泥的粒径主要分布、污泥体积指数(SVI)、比耗氧速率(SOUR)、TN去除率和TP去除率分别为0.45~2.00 mm、19.97 mL/g、47.68 g/(kg·h)、82%和65%;而SBR中好氧颗粒污泥的粒径主要分布、SVI、SOUR、TN去除率和TP去除率分别为0.18~1.00 mm、29.12 mL/g、43.21 g/(kg·h)、58%和50%.相对而言,SBAR更有利于好氧颗粒污泥的培养和运行. 相似文献
14.
颗粒化序列间歇式活性污泥反应器工艺处理化粪池污水 总被引:1,自引:1,他引:0
在序列间歇式活性污泥反应器(SBR)中成功培养出适应化粪池污水水质的好氧颗粒污泥.并将其应用于化粪池污水的处理.在好氧颗粒污泥培养的第15天左右,SBR中开始出现细小的颗粒,然后微生物在其上繁殖生长使颗粒逐渐增大而成熟;在第24天时,SBR中絮状活性污泥已基本实现了颗粒化.培养出的好氧颗粒污泥对化粪池污水有稳定的处理效果,在进水完全为化粪池污水时,COD、NH_4~+-N、TN的平均去除率分别为77%、61%、47%.但是,由于化粪池污水COD较低,因此无法维持较高的生物量,在后期的稳定运行过程中MLSS始终维持在2 500 mg/L左右.好氧颗粒污泥的同步硝化反硝化作用是其稳定脱氮的保证. 相似文献
15.
在SBR中利用光合细菌球形红细菌污泥颗粒进行模拟氯苯废水处理的初步研究,结果表明,采用球形红细菌污泥颗粒处理模拟氯苯废水的SBR系统是可行的,其降解氯苯过程符合Monod一级反应动力学方程。当进水氯苯浓度在125~187.5 mg/L变化时,处理效率都能稳定在90.5%~95.6%之间;其最佳工艺条件为反应时间6 h、DO 4.75~5.0 mg/L、沉淀时间1.5 h、污泥颗粒浓度4 000~6 000 mg/L。在污泥颗粒浓度4 000 mg/L、DO 5.0 mg/L、反应时间6 h的最佳条件下,当进水COD为748.1 mg/L、氯苯浓度100 mg/L时,COD的去除率达90.9%,处理后出水COD满足国家一级排放标准要求。 相似文献
16.
单一好氧环境下的强化生物除磷研究 总被引:1,自引:0,他引:1
将乙酸钠为单一碳源、厌氧/好氧交替、具有较好除磷效果的传统生物除磷SBR系统,改为单一的好氧SBR运行方式,发现改变后的SBR系统仍可取得较好的除磷效果,除磷率最高达73.9%,最低约40%,平均维持在50%左右.这种现象可以维持长达80个周期.污泥含磷率由最初的1.43%增加到6.56%.对污泥微生物胞内PHB和糖原进行测定,结果表明此系统中微生物PHB和糖原在VSS中含量分别约为27 mg/g和26 mg/g,二者含量在好氧过程中都基本保持不变.通过对反应过程中碳源消耗与磷吸收关系的分析,认为该单一好氧条件下的生物除磷机制是由于长期以乙酸钠为唯一碳源下,试验系统中活性污泥被驯化,在胞内聚磷颗粒含量容纳能力范围内还可以在好氧环境下以乙酸钠氧化产生的ATP为能量进行磷吸收所致. 相似文献
17.
低C/N污水的生化处理过程中,由于碳源不足,不能满足硝化和反硝化的要求,造成出水NH3-N超标。采用SBR工艺对某基地污水处理站厌氧处理后的低C/N污水进行改造,处理后出水COD去除率达到97%以上,NH3-N去除率达到93%以上。 相似文献
18.
19.
采用SBR反应器,接种好氧硝化污泥,在142 d内于较高负荷下成功启动了厌氧氨氧化反应器.反应器总氮容积负荷(以N计)为0.43 kg/m3·d,总氮去除率最高达到93.3%,平均为80.5%;氨氮和亚硝酸盐氮的去除率最高达到93.9%和99.8%,平均去除率为81.2%和85.7%.在稳定运行阶段,氨氮去除量、亚硝酸盐氮去除量、硝酸盐氮生成量三者之间的比值为1:1.38:0.18.反应器启动过程中,出水、进水pH差值的变化趋势由负到正,然后稳定在一定范围内;且污泥性状有较大变化,污泥中微生物所占比率有所提高,整个反应器中适应厌氧氨氧化运行方式的菌种增殖较快. 相似文献
20.
用SBR法处理豆制品废水的试验表明,该系统具有较好的抗负荷冲击能力,进水COD在300~2000 mg/L之间变化,对系统不造成任何影响;考察了曝气时间、曝气量和污泥浓度等对去除效果的影响,试验结果表明,曝气时间和曝气量对处理效果影响很大,确定该反应系统最佳曝气时间是8 h,适宜的曝气量是800 L/h,而污泥浓度控制在4000 mg/L左右时,处理效率最高,采用进水顶出水的排水方式是可行的,确定系统的最佳排水比是3/5.厌氧段的插入可以减少剩余污泥的产量. 相似文献