首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   16篇
  国内免费   128篇
安全科学   3篇
废物处理   3篇
环保管理   24篇
综合类   195篇
基础理论   41篇
污染及防治   44篇
评价与监测   18篇
社会与环境   17篇
灾害及防治   4篇
  2024年   4篇
  2023年   9篇
  2022年   15篇
  2021年   24篇
  2020年   16篇
  2019年   18篇
  2018年   18篇
  2017年   19篇
  2016年   11篇
  2015年   18篇
  2014年   12篇
  2013年   13篇
  2012年   19篇
  2011年   24篇
  2010年   17篇
  2009年   19篇
  2008年   15篇
  2007年   21篇
  2006年   13篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1993年   2篇
  1986年   1篇
  1980年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有349条查询结果,搜索用时 828 毫秒
11.
千岛湖溶解氧的动态分布特征及其影响因素分析   总被引:4,自引:3,他引:1  
基于2011~2012年1~12月千岛湖6个站点的溶解氧浓度实时监测数据,分析了千岛湖溶解氧的垂直分布以及时空分布特征,并探讨了影响水体溶解氧动态分布特征的影响因子.结果表明,溶解氧分布特征有明显的垂向差异以及季节差异.冬季,平均溶解氧值较高,除大坝前站点,其余各站点溶解氧无显著垂向差异;夏季,溶解氧垂向差异显著大于春秋两季.水深较深的小金山、三潭岛和大坝前站点其夏季溶解氧最大值出现在真光层,分别达到11.59、12.52和10.96 mg·L-1.千岛湖表层溶解氧最大值出现在春季,而最小值出现在秋季.相关性分析结果表明,溶解氧与水温、pH、叶绿素a浓度的相关性存在季节性差异.夏季,水温与溶解氧存在极其显著的线性相关,温度热力分层是影响溶解氧在夏季垂直分布的关键因素.春夏季,pH、叶绿素a浓度与溶解氧的相关系数较高,主要与浮游植物光合作用有关.  相似文献   
12.
王岚  张桂玲  孙明爽  任景玲 《环境科学》2014,35(12):4502-4510
分别于2012年3月和7月对长江口及其邻近海域进行了调查,对水体中溶解氧化亚氮(N2O)的分布及海-气交换通量进行了研究.结果表明,春季长江口及其邻近海域表层海水中溶解N2O浓度范围为9.34~49.08 nmol·L-1,平均值为(13.27±6.40)nmol·L-1.夏季表层溶解N2O浓度范围为7.27~27.81 nmol·L-1、平均值为(10.62±5.03)nmol·L-1.两航次表、底层海水中溶解N2O浓度相差不大.长江口溶解N2O浓度由近岸向外海逐渐降低,受陆源输入影响显著.溶解N2O浓度高值出现在长江口最大浑浊带附近,这主要是由于水体中较高的硝化速率造成的.温度是影响N2O分布的另一个重要因素,对溶解N2O浓度有双重作用.春季和夏季表层海水中N2O饱和度范围分别为86.9%~351.3%和111.7%~396.0%,平均值分别为(111.5±41.4)%和(155.9±68.4)%,大部分站位处于过饱和状态.利用LM86、W92和RC01公式分别计算了长江口及其邻近海域N2O的海-气交换通量,春季分别为(3.2±10.9)、(5.5±19.3)和(12.2±52.3)μmol·(m2·d)-1,夏季分别为(7.3±12.4)、(12.7±20.4)和(20.4±35.9)μmol·(m2·d)-1,初步估算出长江口及其邻近海域的年平均释放量分别为0.6×10-2Tg·a-1(LM86)、1.1×10-2Tg·a-1(W92)、2.0×10-2Tg·a-1(RC01).长江口及其邻近海域虽然只占全球海洋总面积的0.02%,但其释放的N2O占全球海洋释放量的0.06%,表明长江口及其邻近海域是产生和释放N2O的活跃区域.  相似文献   
13.
南京市不同季节大气亚微米颗粒物化学组分在线观测研究   总被引:6,自引:4,他引:2  
本研究利用Aerodyne气溶胶化学组分监测仪在典型冬季重污染(12月)和夏季(8月)时期分别对南京城市大气非难熔性亚微米细颗粒物(NR-PM1)进行连续在线观测.结果表明,NR-PM1的组分平均贡献为(8月,12月):有机物(51.8%,44%)、硝酸盐(12.8%,23%)、硫酸盐(20.9%,13%)、铵盐(14%,16.8%)、氯化物(0.5%,3.2%).硝酸盐和硫酸盐在8月和12月呈现不同的日变化,如硝酸盐在12月白天呈现增加趋势,表明白天光化学作用对硝酸盐形成起主导作用;12月高浓度的硫酸盐在较高相对湿度的夜间被观测到,而8月在午后出现峰值,这表明在12月和8月硫酸盐的形成可能分别被液相生成和气相光化学作用驱动.8月臭氧污染期间,硝酸盐通过非均相反应在夜间快速形成,日出后,SO_2-4和氧化态有机气溶胶(OOA)同时增加表明二次气溶胶的形成;12月霾污染期间,二次无机组分和具有较高氧化度的OOA逐渐增加.  相似文献   
14.
利用固相萃取-气相色谱/串联质谱法(SPE-GC-MS/MS),对太湖流域上游城镇常州武南地区的地表水体和典型排放源中的4种芳香胺类污染物(AAs)进行连续2年监测,综合分析了2018~2019年间AAs的污染及浓度特征.结果表明,武南地区河网中目标AAs的总浓度范围为相似文献   
15.
基于2011—2015年Landsat7、Landsat8等卫星遥感影像,结合土壤侵蚀面积、水资源量、降雨量、污染物排放量等统计数据,按照《生态环境状况评价技术规范》(HJ 192—2015),研究评价广东省"十二五"期间生态环境状况及其时空变化趋势,并对其影响因素进行综合分析。结果表明,广东省的生态环境状况总体为优,各市生态环境状况均属优、良,粤北生态环境状况整体最好;广东省及各市生态环境状况稳中趋好,但呈现温和地波动变化;主要污染物排放量下降和水资源总量提高是促进生态环境状况改善的主要原因。  相似文献   
16.
UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge distribution and its impact on performance of UNITANK were carried out in Liede Wastewater Plant (WWTP) of Guangzhou, China. Results showed that there was a strong affiliation between Tank A and B of the system in sludge concentration distribution. The initial sludge concentration in Tank A could present the sludge distribution of the whole system. The sludge distribution was mainly influenced by hydraulic condition. Unsteady sludge distribution had an impact on variations of substrates in reactors, especially in decisive reactor, and this could lead to failure of system. Settler could partially remove substrates such as COD and NO3-N, but there was adventure of sludge deterioration. The rational initial sludge concentration in Tank A should be 4000-6000 mg/L MLSS.  相似文献   
17.
PM_(2.5)and PM_(10)samples were collected at four major cities in the Pearl River Delta(PRD),South China,during winter and summer in 2002.Six water-soluble ions,Na~ ,NH_4~ ,K~ ,Cl~-,NO_3~- and SO_4~(2-)were measured using ion chromatography.On average,ionic species accounted for 53.3% and 40.5% for PM_(2.5)and PM_(10),respectively in winter and 39.4% and 35.2%,respectively in summer. Secondary ions such as sulfate,nitrate and ammonium accounted for the major part of the total ionic species.Sulfate was the most abundant species followed by nitrate.Overall,a regional pollution tendency was shown that there were higher concentrations of sulfate, nitrate and ammonium in Guangzhou City than those in the other PRD cities.Significant seasonal variations were also observed with higher levels of species in winter but lower in summer.The Asian monsoon system was favorable for removal and diffusion of air pollutants in PRD in summer while highly loading of local industrial emissions tended to deteriorate the air quality as well.NO_3~-/SO_4~(2-) ratio indicated that mobile sources have considerably contribution to the urban aerosol,and stationary sources should not be neglected. Besides the primary emissions,complex atmospheric reactions under favorable weather conditions should be paid more attention for the control of primary emission in the PRD region.  相似文献   
18.
三峡库区重庆段土壤保持服务时空分布格局研究   总被引:4,自引:0,他引:4  
土壤保持是生态系统服务与功能的重要组成,在防止土壤侵蚀、减少径流泥沙与农业面源污染等方面具有至关重要的作用。以对国家生态安全具有重要作用的土壤保持生态功能区——三峡库区重庆段为研究区域,研究得到了2000~2013年时间序列区域土壤保持服务"流量"结果,结果表明:(1)三峡库区重庆段多年平均土壤保持量为604.39 t/hm~2·a,沿长江干流自西向东逐渐增强,区域差异显著;(2)三峡库区的土壤保持服务存在明显的垂直分异特征,随着高程的增加,以300 m与900 m为节点,出现递减-递增-递减的分段规律,与人类活动存在明显的相关关系;(3)增加森林覆被面积是改善区域土壤保持、减少水土流失的重要举措。同时,在三峡库区开展坡改梯工程,减少坡耕地的数量能够有效控制区域水土流失;  相似文献   
19.
近52年来洞庭湖流域气象干旱的时空分布特征   总被引:3,自引:0,他引:3  
基于洞庭湖流域84个气象站点1962~2013年的逐日气象资料,利用综合干旱指数(CI)对洞庭湖流域气象干旱的时间和空间特征进行分析。结果表明:在过去52 a,区域性干旱强度较强的时段以夏季、秋季、夏秋和秋冬时节为主;区域干旱强度在春季、夏季、夏秋、冬季呈上升趋势;秋冬时节和年干旱强度变化不明显;春夏时节、夏秋时节、秋冬时节和冬春时节的平均干旱强度比春、夏、秋、冬单个季节的平均干旱强度大。小波分析表明,区域干旱强度的周期以10a为主周期,5 a和22 a为次周期。近52 a来,历年干旱站次比主要集中于10%~30%之间,多表现为区域性干旱,以夏季和秋季的干旱范围较大;干旱频率高发时期主要为夏季、夏秋时节和秋季。干旱频率高发地主要以流域的南部山地和北部的洞庭湖平原为主,西北部的山地发生干旱相对较少,衡邵盆地随季节变化干旱频率易发生高低值转换。  相似文献   
20.
Using a methodology derived from Economics, the Lorenz Curve and Gini Coefficient are introduced as tools for investigating and quantifying seasonal variability in environmental radon gas concentration. While the Lorenz Curve presents a graphical view of the cumulative exposure during the course of the time-frame of interest, typically one year, the Gini Coefficient distils this data still further, to provide a single-parameter measure of temporal clustering. Using the assumption that domestic indoor radon concentrations show annual cyclic behaviour, generally higher in the winter months than in summer, published data on seasonal variability of domestic radon concentration levels, in various areas of the UK, Europe, Asia and North America, are analysed. The results demonstrate significantly different annual variation profiles between domestic radon concentrations in different countries and between regions within a country, highlighting the need for caution in ascribing seasonal correction factors to extended geographical areas. The underlying geography, geology and meteorology of a region have defining influences on the seasonal variability of domestic radon concentration, and some examples of potential associations between the Gini Coefficient and regional geological and geographical characteristics are proposed. Similar differences in annual variation profiles are found for soil-gas radon measured as a function of depth at a common site, and among the activity levels of certain radon progeny species, specifically 214Bi deposited preferentially in human body-fat by decay of inhaled radon gas. Conclusions on the association between these observed measures of variation and potential underlying defining parameters are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号