首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   4篇
  国内免费   64篇
废物处理   1篇
环保管理   70篇
综合类   150篇
基础理论   82篇
污染及防治   184篇
评价与监测   76篇
社会与环境   23篇
灾害及防治   2篇
  2023年   3篇
  2022年   10篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   13篇
  2016年   22篇
  2015年   11篇
  2014年   16篇
  2013年   55篇
  2012年   28篇
  2011年   72篇
  2010年   31篇
  2009年   49篇
  2008年   54篇
  2007年   34篇
  2006年   28篇
  2005年   12篇
  2004年   15篇
  2003年   16篇
  2002年   14篇
  2001年   13篇
  2000年   9篇
  1999年   5篇
  1998年   14篇
  1997年   11篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有588条查询结果,搜索用时 531 毫秒
191.
Undamming Rivers: A Review of the Ecological Impacts of Dam Removal   总被引:26,自引:4,他引:22  
Dam removal continues to garner attention as a potential river restoration tool. The increasing possibility of dam removal through the FERC relicensing process, as well as through federal and state agency actions, makes a critical examination of the ecological benefits and costs essential. This paper reviews the possible ecological impacts of dam removal using various case studies. Restoration of an unregulated flow regime has resulted in increased biotic diversity through the enhancement of preferred spawning grounds or other habitat. By returning riverine conditions and sediment transport to formerly impounded areas, riffle/pool sequences, gravel, and cobble have reappeared, along with increases in biotic diversity. Fish passage has been another benefit of dam removal. However, the disappearance of the reservoir may also affect certain publicly desirable fisheries. Short-term ecological impacts of dam removal include an increased sediment load that may cause suffocation and abrasion to various biota and habitats. However, several recorded dam removals have suggested that the increased sediment load caused by removal should be a short-term effect. Preremoval studies for contaminated sediment may be effective at controlling toxic release problems. Although monitoring and dam removal studies are limited, a continued examination of the possible ecological impacts is important for quantifying the resistance and resilience of aquatic ecosystems. Dam removal, although controversial, is an important alternative for river restoration.  相似文献   
192.
The aim of this work was to develop a method to assess the microbial accessibility of native phenanthrene present in soils and sediments. We developed an accelerated biodegradation assay, characterized by (a) inoculation with a sufficient number of phenanthrene-degrading microorganisms, (b) monitoring of the biodegradation activity through 14C-mineralization measurements, and (c) single-step chemical analysis of the native compound in the residue. The use of 14C-labeling allowed the determination of the time period needed for biodegradation of the bioaccessible fraction of the native chemical. The method was tested with environmental samples having a wide range of phenanthrene concentrations, i.e., from background levels (μg kg-1) originating in soil from atmospheric deposition, to acute concentrations (g kg-1) corresponding to industrial pollution of soils and sediments. The results showed a wide range of bioaccessibility (15–95% of the initial amount). The method can be used for the assessment of bioaccessibility involved in the management of polycyclic aromatic hydrocarbon (PAH) pollution.  相似文献   
193.
In order to better understand the contribution of nutrients regeneration pathway, release potential and transformation pattern to cyanobacterial growth and succession, 7 sampling sites in Lake Chaohu with different bloom degree were studied every two months from February to November 2018. The carbon, nitrogen (N) and phosphorus (P) forms or fractions in surface, interstitial water and sediments as well as extracellular enzymatic activities, P sorption, specific microbial abundance and community composition in sediments were analyzed. P regeneration pathway was dominated by iron-bound P desorption and phosphorus-solubilizing bacteria solubilization in severe-bloom and slight-bloom area respectively, which both resulted in high soluble reactive phosphorus (SRP) accumulation in interstitial water. However, in severe-bloom area, higher P release potential caused the strong P release and algal growth, compared to slight-bloom area. In spring, P limitation and N selective assimilation of Dolichospermum facilitated nitrate accumulation in surface water, which provided enough N source for the initiation of Microcystis bloom. In summer, the accumulated organic N in Dolichospermum cells during its bloom was re-mineralized as ammonium to replenish N source for the sustainable development of Microcystis bloom. Furthermore, SRP continuous release led to the replacement of Dolichospermum by Microcystis with the advantage of P quick utilization, transport and storage. Taken together, the succession from Dolichospermum to Microcystis was due to both the different forms of N and P in water column mediated by different regeneration and transformation pathways as well as release potential, and algal N and P utilization strategies.  相似文献   
194.
Ecological restoration is one of the hot technologies for the reconstruction of eutrophic lake ecosystems in which the restoration and propagation of submerged plants is the key and difficult step. In this paper, the effect of vermiculite on the growth process of Vallisneria spiralis and sediment microenvironment were investigated, aiming to provide a theoretical basis for the application of vermiculite in aquatic ecological restoration. Results of growth indexes demonstrated that 5% and 10% vermiculite treatment groups statistically promote the growth of Vallisneria spiralis compared to the control. Meanwhile, the results of ecophysiological indexes showed that photosynthetic pigment, soluble sugar content, superoxide dismutase (SOD), and catalase (CAT) activity of 5% and 10% group were increased compared with the control while the malondialdehyde (MDA) content exhibited the opposite result (p < 0.05), which illustrated that vermiculite can improve the resistance of plants and delay the aging process of Vallisneria spiralis. In addition, result of PCA (Principal Component Analysis) demonstrated 5% and 10% group has improved the sediment physical conditions and create more ecological niche for microorganisms directly, and then promoted the growth of plants. The dissolution results showed that vermiculite can dissolve the constant and trace elements needed for plant growth. Furthermore, the addition of vermiculite increased the diversity of microorganisms in the sediments, and promoted the increase of plant growth-promoting bacteria and phosphorus-degrading bacteria. This study could provide a technique reference for the further application of vermiculite in the field of ecological restoration.  相似文献   
195.
The passive sampling technique, diffusive gradients in thin films (DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been questioned because of the small effective sampling area (3.1 cm2). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area (27 cm2) and as a result lower method quantification limits (0.15 – 0.21 ng/L for one-day deployment and 0.02 – 0.03 ng/L for one-week deployment) and much higher (by > 10 factors) sampling rate (100 mL/day) compared to the standard DGT (piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling (500 mL). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.  相似文献   
196.
Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu- and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios (2.5%, 5%, and 10%) and incubated for 10, 30, or 60?days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment pH and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption, metal crystallization, and the pH were the main controls on the stabilization of metals in contaminated sediment by biochar.  相似文献   
197.
Methylsiloxanes are a class of silicone compounds that have been widely used in various industrial processes and personal care products for several decades. This study investigated the spatial distribution of three cyclic methylsiloxanes (D4–D6) and twelve linear methylsiloxanes (L5–L16) in mollusks collected from seven cities along the Bohai Sea. D4–D6 (df?=?71%–81%) and L8–L16 (df?=?32%–40%) were frequently detectable in the mollusk samples, while L5–L7 were not found in any mollusk samples. Cyclic methylsiloxanes (D4–D6) were found in mollusks with the mean concentrations of 15.7?±?12.3?ng/g ww for D4, 24.6?±?15.8?ng/g ww for D5 and 34.0?±?23.0?ng/g ww for D6. Among the seven sampling cities, the cyclic methylsiloxanes were predominant in mollusks, with the total cyclic methylsiloxanes (sum of D4–D6, ∑ CMS) accounting for 74.2%–80.7% of the total methylsiloxanes. ∑ CMS along the coastline demonstrated a clear gradient, with the highest concentrations in mollusks at the sampling sites located in the western part of the Bohai Sea and the lowest concentrations in mollusks from cities located in the eastern part of the Bohai Sea. The biota-sediment accumulation factors for cyclic methylsiloxanes (D4–D6) and linear methylsiloxanes (L8–L16) were estimated as 0.42?±?0.06–0.53?±?0.06 and 0.13?±?0.03–0.19?±?0.05, respectively.  相似文献   
198.
With the development of nanotechnology,gold(Au) and graphene oxide(GO) nanoparticles have been widely used in various fields,resulting in an increased release of these particles into the environment.The released nanoparticles may eventually accumulate in sediment,causing possible ecotoxicological effects to benthic invertebrates.However,the impact of Au-NPs and GO-NPs on the cosmopolitan oligochaete,Tubifex tubifex,in sediment exposure is not known.Mortality,behavioral impact(GO-NP and Au-NP) and uptake(only Au-NP) of sediment-associated Au-NPs(4.9±0.14 nm) and GO-NPs(116±0.05 nm) to T.tubifex were assessed in a number of 5-day exposure experiments.The results showed that the applied Au-NP concentrations(10 and 60 μg Au/g dry weight sediment) had no adverse effect on T.tubifex survival,while Au bioaccumulation increased with exposure concentration.In the case of GO-NPs,no mortality of T.tubifex was observed at a concentration range of 20 and180 μg GO/g dry weight sediment,whereas burrowing activity was significantly reduced at 20 and 180 μg GO/g dry weight sediment.Our results suggest that Au-NPs at 60 μg Au/g or GO-NPs at 20 and 180 μg GO/g were detected by T.tubifex as toxicants during short-term exposures.  相似文献   
199.
The occurrence, toxicities, and ecological risks of five heavy metals(Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates(tubificid and chironomid).The correlations between toxicity of sediment and the sediment quality guidelines(SQGs)derived previously were evaluated. There were significant correlations(p 0.0001) between the observed toxicities and the total risk quotients of the heavy metals based on SQGs,indicating that threshold effect level(TEL) and probable effect level(PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides(AVS) and simultaneously extracted metals(SEM),such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover,the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake.  相似文献   
200.
Twelve sediment cores were collected in July 2007 in open waters of western Bohai Bay, the Port of Tianjin, and the adjacent estuaries of the Haihe and Yongding Rivers. While overall concentrations of trace metals at incremental depths in these cores met the Marine Sediment Quality (GB18668-2002) criteria of China, the magnitude of both metal enrichment factors (EF) and geoaccumulation indices (I(geo)) suggested that pollution with Ag, Cd, Cr, Cu and Zn was occurring in the estuaries and Port. Risk analysis also suggested that Ag and Ni concentrations were sufficiently elevated as to cause adverse biological effects in the study area. Although metal concentrations in western Bohai Bay were of less concern, a positive relationship between EF values and excess (210)Pb activity for several metals suggested that their concentrations were increasing over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号