全文获取类型
收费全文 | 1473篇 |
免费 | 98篇 |
国内免费 | 352篇 |
专业分类
安全科学 | 87篇 |
废物处理 | 17篇 |
环保管理 | 290篇 |
综合类 | 670篇 |
基础理论 | 207篇 |
污染及防治 | 456篇 |
评价与监测 | 128篇 |
社会与环境 | 55篇 |
灾害及防治 | 13篇 |
出版年
2024年 | 5篇 |
2023年 | 32篇 |
2022年 | 53篇 |
2021年 | 50篇 |
2020年 | 43篇 |
2019年 | 51篇 |
2018年 | 44篇 |
2017年 | 55篇 |
2016年 | 69篇 |
2015年 | 58篇 |
2014年 | 68篇 |
2013年 | 124篇 |
2012年 | 95篇 |
2011年 | 138篇 |
2010年 | 75篇 |
2009年 | 128篇 |
2008年 | 111篇 |
2007年 | 95篇 |
2006年 | 95篇 |
2005年 | 57篇 |
2004年 | 73篇 |
2003年 | 48篇 |
2002年 | 49篇 |
2001年 | 66篇 |
2000年 | 46篇 |
1999年 | 22篇 |
1998年 | 43篇 |
1997年 | 30篇 |
1996年 | 8篇 |
1995年 | 10篇 |
1994年 | 12篇 |
1993年 | 10篇 |
1992年 | 11篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 6篇 |
1986年 | 1篇 |
1985年 | 6篇 |
1984年 | 3篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1980年 | 3篇 |
1979年 | 4篇 |
1978年 | 3篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1968年 | 1篇 |
排序方式: 共有1923条查询结果,搜索用时 15 毫秒
111.
纳米Ag粒子在我国主要类型土壤中的迁移转化过程与环境效应 总被引:2,自引:0,他引:2
随着纳米技术的快速发展,纳米材料进入环境并不断累积,因此开展纳米材料的环境安全性研究具有重要意义.纳米银(Ag NP)是目前应用最广泛的人工纳米材料之一.本课题组拟以Ag NP为研究对象,系统研究其在我国主要类型土壤中的迁移、转化过程及其生态环境效应;基于同步辐射技术、同位素技术和量子化学计算等方法,揭示Ag NP与土壤中主要矿物或有机质之间的相互作用规律;探明Ag NP对土壤中微生物、动物和植物的致毒过程及其作用机制;发展Ag NP在土壤中迁移的数学模型,预测其在土壤中的迁移、滞留通量进而评价其淋溶风险,为Ag NP的安全利用提供重要理论基础和技术支撑. 相似文献
112.
Information on benthic carbon mineralization rates is often derived from the analysis of oxygen microprofiles in sediments. To enable a direct comparison of different sediment environments, it is often desirable to characterize sediments by a single proxy that expresses their “reactivity” towards oxygen. For this, there are three commonly used proxies: the oxygen penetration depth (OPD), the oxygen flux at the sediment-water interface (DOU), and the maximum volumetric oxygen consumption rate (Rmax). The OPD can be directly determined from the oxygen depth profile, while the DOU is usually obtained by a linear fit to the oxygen gradient either in diffusive boundary layer. The oxygen consumption rate Rmax requires the fitting of a reactive-transport model to the data profile. This article shows that the OPD alone is a suboptimal proxy, because it shows a strong dependence on the half-saturation constant Ks, and secondly, because it is sensitive to the particular re-oxidation conditions right above the oxic-anoxic interface. Similarly, the volumetric oxygen consumption rate Rmax is rather strongly dependent on the kinetic model formulation employed. To show this we fitted three different (Bouldin, Blackman and Monod) kinetics to the same oxygen data profiles. When fitting these models, the Rmax values obtained differed by 20% for exactly the same oxygen profile. Accordingly, if one reports Rmax values, it is crucial to specify the kinetic model alongside. Overall, DOU emerges as sediment reactivity proxy which is the least model dependent. 相似文献
113.
KIRSTIN K. HOLSMAN MARK D. SCHEUERELL ERIC BUHLE ROBERT EMMETT 《Conservation biology》2012,26(5):912-922
Abstract: Captive rearing and translocation are often used concurrently for species conservation, yet the effects of these practices can interact and lead to unintended outcomes that may undermine species’ recovery efforts. Controls in translocation or artificial‐propagation programs are uncommon; thus, there have been few studies on the interacting effects of these actions and environmental conditions on survival. The Columbia River basin, which drains 668,000 km2 of the western United States and Canada, has an extensive network of hydroelectric and other dams, which impede and slow migration of anadromous Pacific salmon (Oncorhynchus spp.) and can increase mortality rates. To mitigate for hydrosystem‐induced mortality during juvenile downriver migration, tens of millions of hatchery fish are released each year and a subset of wild‐ and hatchery‐origin juveniles are translocated downstream beyond the hydropower system. We considered how the results of these practices interact with marine environmental conditions to affect the marine survival of Chinook salmon (O. tshawytscha). We analyzed data from more than 1 million individually tagged fish from 1998 through 2006 to evaluate the probability of an individual fish returning as an adult relative to its rearing (hatchery vs. wild) and translocation histories (translocated vs. in‐river migrating fish that traveled downriver through the hydropower system) and a suite of environmental variables. Except during select periods of very low river flow, marine survival of wild translocated fish was approximately two‐thirds less than survival of wild in‐river migrating fish. For hatchery fish, however, survival was roughly two times higher for translocated fish than for in‐river migrants. Competition and predator aggregation negatively affected marine survival, and the magnitude of survival depended on rearing and translocation histories and biological and physical conditions encountered during their first few weeks of residence in the ocean. Our results highlight the importance of considering the interacting effects of translocation, artificial propagation, and environmental variables on the long‐term viability of species. 相似文献
114.
Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (delta15N, delta13C, delta34S) in fish were also measured. No lake sediments had elevated (>0.3microg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high (<1microg/g dw) to be of concern for fish-eating wildlife. Variance in fish Hg was best explained by dietary carbon source (delta13C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher delta34S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and delta34S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation. 相似文献
115.
Inverse modeling of multicomponent reactive transport through single and dual porosity media 总被引:3,自引:0,他引:3
Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX (Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model. 相似文献
116.
Persson Y Shchukarev A Oberg L Tysklind M 《Environmental science and pollution research international》2008,15(6):463-471
BACKGROUND, AIM, AND SCOPE: The distribution of chlorinated organic contaminants in groundwater and the importance of colloids were studied in groundwater from a sawmill site contaminated by chlorophenol preservatives. MATERIALS AND METHODS: The groundwater was fractionated into three different size ranges: (1) >0.7 mum, (2) 0.4-0.7 mum and (3) 0.2-0.4 mum and the filtered water phase. The concentrations of chlorophenols (CP), chlorinated phenoxy phenols (PCPP), chlorinated diphenyl ethers (PCDE), chlorinated dibenzofurans (PCDF) and chlorinated dibenzo-p-dioxins (PCDD) were determined in each fraction. The colloids were characterised regarding the chemical composition using X-ray photoelectron spectroscopy (XPS). RESULTS: Chlorophenols were mostly found in the water fraction and PCDD/Fs were found almost exclusively in the particulate fractions. For example, the filtered water phase contained 2,100 mug l(-1) and 0.72 ng l(-1) for CPs and PCDD/Fs, respectively, and the particulate fractions contained 27 mug l(-1) and 32 ng l(-1) for CPs and PCDD/Fs, respectively. XPS evaluation of the particulate phases showed no correlation between the surface chemistry of the particle properties and the distribution of chlorinated compounds. DISCUSSION: The results suggest that groundwater transport of CPs, PCPPs, PCDEs and PCDD/Fs may occur from contaminated sawmill sites and that the colloid-facilitated transport, especially of PCDD/Fs, is substantial. The results correlated well with previous studies of compounds sorbed to dissolved organic carbon, which indicate that dissolved and colloidal organic carbon facilitated the transport of PCDEs, PCDFs and PCDDs particularly. CONCLUSIONS: Several classes of chlorinated compounds were readily detected in the groundwater samples. Due to the differences in their physicochemical properties, CPs, PCPPs, PCDEs and PCDD/Fs vary in their partitioning between colloidal fractions and the filtered groundwater. The proportion of the bound fraction increased with an increasing hydrophobicity of the chlorinated compounds. The groundwater transport of colloid-associated pollutants from the site may be significant. RECOMMENDATIONS AND PERSPECTIVES: The results imply that colloidal particles <0.7 mum are freely mobile in groundwater from this site. The groundwater transport of colloid-associated pollutants may be significant. However, the extent of the problem is not yet known and, thus, further research is needed to evaluate the impact of colloidal transport of hydrophobic organic contaminants. In Sweden alone, 400 to 500 sawmill sites are estimated to be contaminated with PCDD/Fs as a result of the former use of CP-based wood preservatives. The widespread use of CP mixtures for a variety of applications, including wood preservation, indicates that potential colloidal transport will be an issue of concern in many countries. 相似文献
117.
Solute transport in fractured rocks is of major interest in many applications, from the petroleum industry to ground water management. This work focuses on the dispersion process in a transparent replica of a real single fracture. The fracture exhibits strong changes in heterogeneity, with the first half very heterogeneous and the second half fairly homogeneous. Three models have been used to interpret the tracer experiments: the classical advection-dispersion equation (ADE), the continuous time random walk (CTRW), and the stratified model. The main goals were to test these models and to study possible correlations between fitting parameters and heterogeneities. As expected, the solution derived from the ADE equation appears to be unable to model long-time tailing behavior. On the other hand, the results confirm the CTRW robustness and the coefficient beta seems well correlated to heterogeneities. Finally, the stratified model is also able to describe non-Fickian dispersion. The parameters defined by this model are correlated to the heterogeneities of the fracture. 相似文献
118.
Arcos D Grandia F Domènech C Fernández AM Villar MV Muurinen A Carlsson T Sellin P Hernán P 《Journal of contaminant hydrology》2008,102(3-4):196-209
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca. 相似文献
119.
Identification of key parameters controlling dissolved oxygen migration and attenuation in fractured crystalline rocks 总被引:1,自引:0,他引:1
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks. 相似文献
120.
Bauer RD Maloszewski P Zhang Y Meckenstock RU Griebler C 《Journal of contaminant hydrology》2008,96(1-4):150-168
Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L(-1) toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5+/-6.2 mg L(-1)) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth. 相似文献