首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  国内免费   37篇
安全科学   2篇
环保管理   5篇
综合类   49篇
基础理论   36篇
污染及防治   11篇
评价与监测   9篇
社会与环境   4篇
灾害及防治   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   4篇
  2015年   10篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有117条查询结果,搜索用时 328 毫秒
61.
The self-thinning line is a very robust pattern, which can be obtained in modeling studies by a variety of different mechanistic assumptions. Our opinion is that we can only advance in our understanding of mechanisms leading to the self-thinning relationship if we demand that the model also reproduces several other characteristic features (patterns) of the self-thinning process such as the degree of size inequality and the average size. We use a pattern-oriented modeling approach to develop a model of self-thinning under size inequality in overcrowded, even-aged stands, which reproduces these three patterns simultaneously. Our approach is to first develop an initial model based on our current ecological knowledge and then to refine the model by modifying the initial model to derive the model that reproduces all patterns of interest.The initial model is as simple as possible while avoiding incidental, ecologically unjustified, assumptions. It is a further development of zone of influence-simulation models: each plant is described by two circles, one describing a minimum-domain-area and one describing the zone of influence. In the initial model, mortality is “death-by-contact” of minimum-domain-areas and growth is a function of inter-tree competition, i.e. overlapping zones of influence. Model parameterization is based on field data on Acacia reficiens in southern Africa. Simulations follow patches of initially small trees through time for up to 1000 years with five parameters, three describing growth and two describing inter-tree competition. A sensitivity analysis shows that all parameters of the initial model contribute significantly to the number and size of plants through time. The two competition parameters, which describe competitive asymmetry and the size of the zone of influence relative to canopy size, are both important for generating size inequality. Thus, both competitive asymmetry and spatial pattern contribute to size inequality, and their relative importance may vary greatly.The sensitivity analysis suggests that all processes included in the initial model are essential to the evolution of size inequality. However, size inequality under the initial model is below field values, meaning that additional, as yet unconsidered processes, contribute to size inequality. Our best-fit model additionally contains details on growth stochasticity.This study establishes the often-proposed direct link between mortality driven by local competition and self-thinning and highlights the importance of stochasticity in ecological processes.  相似文献   
62.
采集澳门地区不同区域大气PM10样品,根据单颗粒图像分析方法分析了PM10的粒径分布,计算了各采样点PM10粒度分布的分形维数,分析讨论了PM10粒度分布分形维数的变化与粒度分布的关系,分析了粒度分布分形维数表征的澳门大气PM10不同采样点、不同季节的粒度整体分布及其影响因素之间的关系。结果表明,澳门地区PM10粒度分布的分形维数在2.05~3.95之间,夏季PM10的粒度分布分形维数(2.88)大于冬季(2.63),表明夏季PM10的粒度普遍较冬季的细。同一季节不同区域大气PM10的粒度也有较大变化,夏季时,澳门岛的总体颗粒物、矿物颗粒和烟尘颗粒物的分形维数较氹仔岛的偏大,即澳门岛的颗粒物比氹仔岛偏细,而冬季则相反,冬季时,澳门岛的总体颗粒物、矿物颗粒和烟尘颗粒物的分形维数较氹仔岛的偏小。  相似文献   
63.
Atmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 μm. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products.  相似文献   
64.
Naturally occurring and artificially produced radionuclides in the environment may be present in different physico-chemical forms (i.e., radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, degree of complexation, etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time-dependent transformation processes such as mobilisation of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, the original distribution of radionuclides deposited in ecosystems will change over time. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews available fractionation techniques which can be utilised for radionuclide speciation purposes.  相似文献   
65.
Bisphenol A (BPA) is a suspected endocrine disruptor in the environment. However, little is known about its distribution and transport in the atmosphere. Here, the concentrations of BPA in the atmospheric aerosols from urban, rural, marine, and the polar regions were measured using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. The concentrations of BPA (1-17,400 pg m−3) ranged over 4 orders of magnitude in the world with a declining trend from the continent (except for the Antarctica) to remote sites. A positive correlation was found between BPA and 1,3,5-triphenylbenzene, a tracer for plastic burning, in urban regions, indicating that the open burning of plastics in domestic waste should be a significant emission source of atmospheric BPA. Our results suggest that the ubiquity of BPA in the atmosphere may raise a requirement for the evaluation of health effects of BPA in order to control its emission sources, for example, from plastic burning.  相似文献   
66.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   
67.
Crop residue open burning is an important emission source of ambient particles in China. This study analyzed the particle emission characteristics of crop residue open burning through combustion experiments with a novel open combustion simulation device using three typical crop straws in north China (corn, wheat, and rice). Particle samples size ranging from 0.006–9.890 µm were collected by an Electrical Low Pressure Impactor plus, a high size-resolution instrument capable of dividing particles into 14 size stages. The size distributions of organic carbon (OC), elemental carbon (EC), water-soluble ions, and elements were analyzed, and source chemical profiles were constructed for PM0.1, PM1, PM2.5, and PM10. The number concentration of particles was concentrated in the Aiken nuclei mode (0.006–0.054 µm), accounting for 75% of the total number, whereas the mass concentration was concentrated in the accumulation mode (0.054–0.949 µm), accounting for 85.43% of the mass loading. OC, EC, Cl?, and K(include total K and water-soluble K) were the major chemical components of the particles, whose mass percentage distributions differed from those of other components. These five main components exhibited a bell-shaped size distribution in the 0.006–9.890 µm range, whereas the other components exhibited a U-shaped distribution. Among the chemical profiles for PM0.1–PM10, OC was the most important component at 10–30%, followed by EC at 2%–8%. The proportions of K+, Cl?, and K varied substantially in different experimental groups, ranging from 0–15%, and K+ and Cl? were significantly correlated (r = 0.878, α = 0.000).  相似文献   
68.
In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca~(2+) for unit A, Mg~(2+) for unit B, and Na+for unit C) and the proportion of SO_4~(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.  相似文献   
69.
Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter = 1.6 × OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2 + were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%–96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.  相似文献   
70.
As one of the six megalopolitan regions in the world, the Yangtze River Delta is one of the most populated and developed regions of China. The spatial and temporal dynamic pattern of the urbanization process of the megalopolitan region is investigated. This work compared the spatial and temporal dynamic pattern of the urban growth for the five urban areas (Shanghai, Nanjing, Suzhou, Wuxi and Changzhou) in this region. During the 15 years, urban growth patterns were dramatically uneven over three 5-year periods. The size distribution of the five urban areas became more even with the rapid urbanization process. The patterns of urban expansion reflected policy adjustment and economic development throughout the time. Landscape metric analysis across concentric buffer zones was conducted to elucidate the area, shape, size, complexity and configuration of urban expansion. The study indicates the coalescence process occurred during the rapid urban growth from 1990 to 1995 and the moderate growth period from 2000 to 2005, but different urban growth period between 1995 and 2000. The urban growth pattern was coalesced for the Nanjing and Wuxi metropolitan areas and diffused for Shanghai, Suzhou and Changzhou. This approach indicates that the coalescence process was the major growth model for this region in the recent 15 years despite their different size, economic growth and population growth. The diffusion-coalesce dichotomy represent endpoints rather than alternate states of urban growth. This work will be beneficial in understanding the size distribution and urbanization process of the megalopolitan region in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号