首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   65篇
  国内免费   35篇
安全科学   95篇
废物处理   2篇
环保管理   111篇
综合类   98篇
基础理论   118篇
环境理论   2篇
污染及防治   10篇
评价与监测   12篇
社会与环境   11篇
灾害及防治   13篇
  2024年   4篇
  2023年   39篇
  2022年   32篇
  2021年   31篇
  2020年   26篇
  2019年   24篇
  2018年   22篇
  2017年   17篇
  2016年   19篇
  2015年   17篇
  2014年   14篇
  2013年   28篇
  2012年   17篇
  2011年   17篇
  2010年   18篇
  2009年   27篇
  2008年   16篇
  2007年   17篇
  2006年   26篇
  2005年   10篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1973年   1篇
排序方式: 共有472条查询结果,搜索用时 296 毫秒
71.
● MSWNet was proposed to classify municipal solid waste. ● Transfer learning could promote the performance of MSWNet. ● Cyclical learning rate was adopted to quickly tune hyperparameters. An intelligent and efficient methodology is needed owning to the continuous increase of global municipal solid waste (MSW). This is because the common methods of manual and semi-mechanical screenings not only consume large amount of manpower and material resources but also accelerate virus community transmission. As the categories of MSW are diverse considering their compositions, chemical reactions, and processing procedures, etc., resulting in low efficiencies in MSW sorting using the traditional methods. Deep machine learning can help MSW sorting becoming into a smarter and more efficient mode. This study for the first time applied MSWNet in MSW sorting, a ResNet-50 with transfer learning. The method of cyclical learning rate was taken to avoid blind finding, and tests were repeated until accidentally encountering a good value. Measures of visualization were also considered to make the MSWNet model more transparent and accountable. Results showed transfer learning enhanced the efficiency of training time (from 741 s to 598.5 s), and improved the accuracy of recognition performance (from 88.50% to 93.50%); MSWNet showed a better performance in MSW classsification in terms of sensitivity (93.50%), precision (93.40%), F1-score (93.40%), accuracy (93.50%) and AUC (92.00%). The findings of this study can be taken as a reference for building the model MSW classification by deep learning, quantifying a suitable learning rate, and changing the data from high dimensions to two dimensions.  相似文献   
72.
● A novel framework integrating quantile regression with machine learning is proposed. ● It aims to identify factors driving observations to upper boundary of relationship. ● Increasing N:P and TN concentration help fulfill the effect of TP on CHL. ● Wetter and warmer decrease potential and increase eutrophication control difficulty. ● The framework advances applications of quantile regression and machine learning. The identification of factors that may be forcing ecological observations to approach the upper boundary provides insight into potential mechanisms affecting driver-response relationships, and can help inform ecosystem management, but has rarely been explored. In this study, we propose a novel framework integrating quantile regression with interpretable machine learning. In the first stage of the framework, we estimate the upper boundary of a driver-response relationship using quantile regression. Next, we calculate “potentials” of the response variable depending on the driver, which are defined as vertical distances from the estimated upper boundary of the relationship to observations in the driver-response variable scatter plot. Finally, we identify key factors impacting the potential using a machine learning model. We illustrate the necessary steps to implement the framework using the total phosphorus (TP)-Chlorophyll a (CHL) relationship in lakes across the continental US. We found that the nitrogen to phosphorus ratio (N׃P), annual average precipitation, total nitrogen (TN), and summer average air temperature were key factors impacting the potential of CHL depending on TP. We further revealed important implications of our findings for lake eutrophication management. The important role of N׃P and TN on the potential highlights the co-limitation of phosphorus and nitrogen and indicates the need for dual nutrient criteria. Future wetter and/or warmer climate scenarios can decrease the potential which may reduce the efficacy of lake eutrophication management. The novel framework advances the application of quantile regression to identify factors driving observations to approach the upper boundary of driver-response relationships.  相似文献   
73.
● Established a quantification method of pollutant emission standard. ● Predicted the SO2 emission intensity of single coking enterprises in China. ● Evaluated the influence of pollutant discharge standard on prediction accuracy. ● Analyzed the SO2 emissions of Chinese provincial and municipal coking enterprises. Industrial emissions are the main source of atmospheric pollutants in China. Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmospheric pollutants and control atmospheric pollution precisely. Based on China’s coking enterprises in 2020, we proposed a quantitative method for pollutant emission standards and introduced the quantification results of pollutant emission standards (QRPES) into the construction of support vector regression (SVR) and random forest regression (RFR) prediction methods for SO2 emission of coking enterprises in China. The results show that, affected by the types of coke ovens and regions, China’s current coking enterprises have implemented a total of 21 emission standards, with marked differences. After adding QRPES, it was found that the root mean squared error (RMSE) of SVR and RFR decreased from 0.055 kt/a and 0.059 kt/a to 0.045 kt/a and 0.039 kt/a, and theR2 increased from 0.890 and 0.881 to 0.926 and 0.945, respectively. This shows that the QRPES can greatly improve the prediction accuracy, and the SO2 emissions of each enterprise are highly correlated with the strictness of standards. The predicted result shows that 45% of SO2 emissions from Chinese coking enterprises are concentrated in Shanxi, Shaanxi and Hebei provinces in central China. The method created in this paper fills in the blank of forecasting method of air pollutant emission intensity of single enterprise and is of great help to the accurate control of air pollutants.  相似文献   
74.
为研究城市地铁沿线老旧房屋普遍存在结构安全问题,基于机器学习模型,选取房屋年份、楼层、面积等11个属性构建预警指标体系,采用SMOTE过采样、独热编码等方法解决样本离散化、不均衡的问题;利用KNN、Bayes、Logistic、SVM 4种机器学习模型对房屋结构安全数据学习并测试,综合应用Accuracy、F1、AP、...  相似文献   
75.
为了更好地反映环境污染变化趋势,为环境管理决策提供及时、全面的环境质量信息,预防严重污染事件发生,开展城市空气质量预报研究是十分必要的.本文针对环境大数据时代下的城市空气质量预报,提出了一种基于深度学习的新方法.该方法通过模拟人类大脑的神经连接结构,将数据在原空间的特征表示转换到具有语义特征的新特征空间,自动地学习得到层次化的特征表示,从而提高预报性能.得益于这种方式,新方法与传统方法相比,不仅可以利用空气质量监测、气象监测及预报等环境大数据,充分考虑污染物的时空变化、空间分布,得到语义性的污染物变化规律,还可以基于其他空气污染预测方法的结果(如数值预报模式),自动分析其适用范围、优势劣势.因此,新方法通过模拟人脑思考过程实现更充分的大数据集成,一定程度上克服了现有方法的缺陷,应用上更加具有灵活性和可操作性.最后,通过实验证明新方法可以提高空气污染预报性能.  相似文献   
76.
Deep learning (DL) models are increasingly used to make accurate hindcasts of management-relevant variables, but they are less commonly used in forecasting applications. Data assimilation (DA) can be used for forecasts to leverage real-time observations, where the difference between model predictions and observations today is used to adjust the model to make better predictions tomorrow. In this use case, we developed a process-guided DL and DA approach to make 7-day probabilistic forecasts of daily maximum water temperature in the Delaware River Basin in support of water management decisions. Our modeling system produced forecasts of daily maximum water temperature with an average root mean squared error (RMSE) from 1.1 to 1.4°C for 1-day-ahead and 1.4 to 1.9°C for 7-day-ahead forecasts across all sites. The DA algorithm marginally improved forecast performance when compared with forecasts produced using the process-guided DL model alone (0%–14% lower RMSE with the DA algorithm). Across all sites and lead times, 65%–82% of observations were within 90% forecast confidence intervals, which allowed managers to anticipate probability of exceedances of ecologically relevant thresholds and aid in decisions about releasing reservoir water downstream. The flexibility of DL models shows promise for forecasting other important environmental variables and aid in decision-making.  相似文献   
77.
Data-driven techniques are used extensively for hydrologic time-series prediction. We created various data-driven models (DDMs) based on machine learning: long short-term memory (LSTM), support vector regression (SVR), extreme learning machines, and an artificial neural network with backpropagation, to define the optimal approach to predicting streamflow time series in the Carson River (California, USA) and Montmorency (Canada) catchments. The moderate resolution imaging spectroradiometer (MODIS) snow-coverage dataset was applied to improve the streamflow estimate. In addition to the DDMs, the conceptual snowmelt runoff model was applied to simulate and forecast daily streamflow. The four main predictor variables, namely snow-coverage (S-C), precipitation (P), maximum temperature (Tmax), and minimum temperature (Tmin), and their corresponding values for each river basin, were obtained from National Climatic Data Center and National Snow and Ice Data Center to develop the model. The most relevant predictor variable was chosen using the support vector machine-recursive feature elimination feature selection approach. The results show that incorporating the MODIS snow-coverage dataset improves the models' prediction accuracies in the snowmelt-dominated basin. SVR and LSTM exhibited the best performances (root mean square error = 8.63 and 9.80) using monthly and daily snowmelt time series, respectively. In summary, machine learning is a reliable method to forecast runoff as it can be employed in global climate forecasts that require high-volume data processing.  相似文献   
78.
Harmful algal blooms (HABs) diminish the utility of reservoirs for drinking water supply, irrigation, recreation, and ecosystem service provision. HABs decrease water quality and are a significant health concern in surface water bodies. Near real-time monitoring of HABs in reservoirs and small water bodies is essential to understand the dynamics of turbidity and HAB formation. This study uses satellite imagery to remotely sense chlorophyll-a concentrations (chl-a), phycocyanin concentrations, and turbidity in two reservoirs, the Grand Lake O′ the Cherokees and Hudson Reservoir, OK, USA, to develop a tool for near real-time monitoring of HABs. Landsat-8 and Sentinel-2 imagery from 2013 to 2017 and from 2015 to 2020 were used to train and test three different models that include multiple regression, support vector regression (SVR), and random forest regression (RFR). Performance was assessed by comparing the three models to estimate chl-a, phycocyanin, and turbidity. The results showed that RFR achieved the best performance, with R2 values of 0.75, 0.82, and 0.79 for chl-a, turbidity, and phycocyanin, while multiple regression had R2 values of 0.29, 0.51, and 0.46 and SVR had R2 values of 0.58, 0.62, and 0.61 on the testing datasets, respectively. This paper examines the potential of the developed open-source satellite remote sensing tool for monitoring reservoirs in Oklahoma to assess spatial and temporal variations in surface water quality.  相似文献   
79.
徐涛  苏瀚  杨国庆 《中国环境科学》2016,36(4):1250-1257
将集成学习方法引入到机场噪声预测中,提出一种基于空间拟合和神经网络的机场噪声预测集成模型.该模型采用空间拟合算法和BP神经网络算法构建基学习器,然后通过所提出的基于观察学习的异构集成算法将基学习器集成起来,获得集成的机场噪声预测结果.该模型通过集成多个异构机场噪声预测基学习器,能够有效提升预测准确率.实验结果表明,本文所提出的基于观察学习的异构集成算法,较之其他异构集成算法,在解决机场噪声预测问题上准确性更高、容错性更强.  相似文献   
80.
为提高冲击地压预测的效率和准确率,在分析冲击地压影响因素的基础上,提出了一种将遗传算法(GA)与极限学习机(ELM)相结合的冲击地压预测的新方法。为了避免ELM受输入权值矩阵和隐含层偏差随机性的影响,算法采用GA对ELM的输入权值矩阵和隐含层偏差进行优化,建立GA-ELM冲击地压预测模型。利用某矿冲击地压统计数据对该模型进行了实例分析,将ELM、SVM和BP算法预测结果与该模型进行了对比分析。结果表明:GA-ELM模型具有较高的预测精度,可以相对准确、有效地对冲击地压发生的可能性进行预测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号